cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296910 a(0)=1, a(1)=4; thereafter a(n) = 4*n-2*(-1)^n.

Original entry on oeis.org

1, 4, 6, 14, 14, 22, 22, 30, 30, 38, 38, 46, 46, 54, 54, 62, 62, 70, 70, 78, 78, 86, 86, 94, 94, 102, 102, 110, 110, 118, 118, 126, 126, 134, 134, 142, 142, 150, 150, 158, 158, 166, 166, 174, 174, 182, 182, 190, 190, 198, 198, 206, 206, 214, 214, 222, 222, 230, 230, 238, 238
Offset: 0

Views

Author

N. J. A. Sloane, Dec 22 2017

Keywords

Comments

Coordination sequence for the bew tiling with respect to a point where two hexagons meet at only a single point. The coordination sequence for the other type of point can be shown to be A008574.
Notes: There is one point on the positive x-axis at edge-distance n from the origin iff n is even; there is one point on the positive y-axis at edge-distance n from the origin iff n>1 is odd; and the number of points inside the first quadrant at distance n from 0 is n if n is odd, and n-1 if n is even.
Then a(n) = 2*(number on positive x-axis + number on positive y-axis) + 4*(number in interior of first quadrant).

Crossrefs

Apart from first two terms, same as A168384.
Cf. A008574. See A296911 for partial sums.
Coordination sequences for the 20 2-uniform tilings in the order in which they appear in the Galebach catalog, together with their names in the RCSR database (two sequences per tiling): #1 krt A265035, A265036; #2 cph A301287, A301289; #3 krm A301291, A301293; #4 krl A301298, A298024; #5 krq A301299, A301301; #6 krs A301674, A301676; #7 krr A301670, A301672; #8 krk A301291, A301293; #9 krn A301678, A301680; #10 krg A301682, A301684; #11 bew A008574, A296910; #12 krh A301686, A301688; #13 krf A301690, A301692; #14 krd A301694, A219529; #15 krc A301708, A301710; #16 usm A301712, A301714; #17 krj A219529, A301697; #18 kre A301716, A301718; #19 krb A301720, A301722; #20 kra A301724, A301726.

Programs

  • Mathematica
    {1, 4}~Join~Array[4 # - 2 (-1)^# &, 59, 2] (* or *)
    LinearRecurrence[{1, 1, -1}, {1, 4, 6, 14, 14}, 61] (* or *)
    CoefficientList[Series[(1 + 3 x + x^2 + 5 x^3 - 2 x^4)/((1 - x)^2*(1 + x)), {x, 0, 60}], x] (* Michael De Vlieger, Dec 23 2017 *)
  • PARI
    Vec((1 + 3*x + x^2 + 5*x^3 - 2*x^4) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Dec 23 2017

Formula

From Colin Barker, Dec 23 2017: (Start)
G.f.: (1 + 3*x + x^2 + 5*x^3 - 2*x^4) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>4.
(End)