cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296913 Number of ways to properly color the Petersen graph using n colors.

Original entry on oeis.org

0, 0, 120, 12960, 332880, 3868080, 27767880, 144278400, 594347040, 2055598560, 6202551960, 16774966560, 41473626480, 95135323920, 204803912040, 417515696640, 811858751040, 1514650599360, 2724410748600, 4743687388320, 8022734847120, 13217533726320, 21265702652040, 33484472926080, 51695588642400, 78382758698400, 116888127197400
Offset: 1

Views

Author

N. J. A. Sloane, Dec 22 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Array[#^10 - 15 #^9 + 105 #^8 - 455 #^7 + 1353 #^6 - 2861 #^5 + 4275 #^4 - 4305 #^3 + 2606 #^2 - 704 # &, 27] (* Michael De Vlieger, Dec 23 2017 *)
    Rest@ CoefficientList[ Series[-120 x^3 (139x^7 +1693x^6 +7269x^5 +11905x^4 +7495x^3 +1641x^2 +97x +1)/(x -1)^11, {x, 0, 23}], x] (* or *)
    LinearRecurrence[{11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1}, {0, 0, 120, 12960, 332880, 3868080, 27767880, 144278400, 594347040, 2055598560, 6202551960}, 23] (* Robert G. Wilson v, Dec 24 2017 *)
  • PARI
    concat(vector(2), Vec(120*x^3*(1 + 97*x + 1641*x^2 + 7495*x^3 + 11905*x^4 + 7269*x^5 + 1693*x^6 + 139*x^7) / (1 - x)^11 + O(x^40))) \\ Colin Barker, Dec 24 2017

Formula

a(n) = n^10 - 15*n^9 + 105*n^8 - 455*n^7 + 1353*n^6 - 2861*n^5 + 4275*n^4 - 4305*n^3 + 2606*n^2 - 704*n.
From Colin Barker, Dec 24 2017: (Start)
G.f.: 120*x^3*(1 + 97*x + 1641*x^2 + 7495*x^3 + 11905*x^4 + 7269*x^5 + 1693*x^6 + 139*x^7) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)