A296920 Rational primes that decompose in the quadratic field Q(sqrt(-11)).
3, 5, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599, 617, 619, 631, 641, 643, 647, 653, 661, 683, 691, 709, 719
Offset: 1
References
- Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.
Links
Programs
-
Maple
# In the quadratic field Q(sqrt(D)), for squarefree D<0, compute lists of: # rational primes that decompose (SD), # rational primes that are inert (SI), # primes p such that D is a square mod p (QR), and # primes p such that D is a nonsquare mod p (NR), # omitting the latter if it is the same as the inert primes. # Consider first M primes p. # Reference: Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498. with(numtheory): HH := proc(D,M) local SD,SI,QR,NR,p,q,i,t1; # if D >= 0 then error("D must be negative"); fi; if not issqrfree(D) then error("D must be squarefree"); end if; q:=-D; SD:=[]; SI:=[]; QR:=[]; NR:=[]; if (D mod 8) = 1 then SD:=[op(SD),2]; end if; if (D mod 8) = 5 then SI:=[op(SI),2]; end if; for i from 2 to M do p:=ithprime(i); if (D mod p) <> 0 and legendre(D,p)=1 then SD:=[op(SD),p]; end if; if (D mod p) <> 0 and legendre(D,p)=-1 then SI:=[op(SI),p]; end if; end do; for i from 1 to M do p:=ithprime(i); if legendre(D,p) >= 0 then QR:=[op(QR),p]; else NR:=[op(NR),p]; end if; end do: lprint("Primes that decompose:", SD); lprint("Inert primes:", SI); lprint("Primes p such that Legendre(D,p) = 0 or 1: ", QR); if SI <> NR then lprint("Note: SI <> NR here!"); lprint("Primes p such that Legendre(D,p) = -1: ", NR); end if; end proc: HH(-11,200); # produces the present sequence (A296920), A191060, and A056874.
-
Mathematica
Reap[For[p = 2, p < 1000, p = NextPrime[p], If[KroneckerSymbol[-11, p] == 1, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 29 2019 *)
-
PARI
list(lim)=my(v=List()); forprime(p=2,lim, if(kronecker(-11,p)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018
Formula
a(n) ~ 2n log n. - Charles R Greathouse IV, Mar 18 2018
Comments