cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296920 Rational primes that decompose in the quadratic field Q(sqrt(-11)).

Original entry on oeis.org

3, 5, 23, 31, 37, 47, 53, 59, 67, 71, 89, 97, 103, 113, 137, 157, 163, 179, 181, 191, 199, 223, 229, 251, 257, 269, 311, 313, 317, 331, 353, 367, 379, 383, 389, 397, 401, 419, 421, 433, 443, 449, 463, 467, 487, 499, 509, 521, 577, 587, 599, 617, 619, 631, 641, 643, 647, 653, 661, 683, 691, 709, 719
Offset: 1

Views

Author

N. J. A. Sloane, Dec 25 2017

Keywords

Comments

Primes that are 1, 3, 5, 9, or 15 mod 22. - Charles R Greathouse IV, Mar 18 2018
(Which means: union of A141849, A141850, A141852, A141856 and A141851. - R. J. Mathar, Apr 15 2024)

References

  • Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.

Crossrefs

Programs

  • Maple
    # In the quadratic field Q(sqrt(D)), for squarefree D<0, compute lists of:
    # rational primes that decompose (SD),
    # rational primes that are inert (SI),
    # primes p such that D is a square mod p (QR), and
    # primes p such that D is a nonsquare mod p (NR),
    # omitting the latter if it is the same as the inert primes.
    # Consider first M primes p.
    # Reference: Helmut Hasse, Number Theory, Grundlehren 229, Springer, 1980, page 498.
    with(numtheory):
    HH := proc(D,M)
        local SD,SI,QR,NR,p,q,i,t1;
        # if D >= 0 then error("D must be negative"); fi;
        if not issqrfree(D) then
            error("D must be squarefree");
        end if;
        q:=-D;
        SD:=[]; SI:=[]; QR:=[]; NR:=[];
        if (D mod 8) = 1 then
            SD:=[op(SD),2];
        end if;
        if (D mod 8) = 5 then
            SI:=[op(SI),2];
        end if;
        for i from 2 to M do
            p:=ithprime(i);
            if (D mod p) <> 0 and legendre(D,p)=1 then
                SD:=[op(SD),p];
            end if;
            if (D mod p) <> 0 and legendre(D,p)=-1 then
                SI:=[op(SI),p];
            end if;
        end do;
        for i from 1 to M do
            p:=ithprime(i);
            if legendre(D,p) >= 0 then
                QR:=[op(QR),p];
            else
            NR:=[op(NR),p];
            end if;
        end do:
        lprint("Primes that decompose:", SD);
        lprint("Inert primes:", SI);
        lprint("Primes p such that Legendre(D,p) = 0 or 1: ", QR);
        if SI <> NR then
            lprint("Note: SI <> NR here!");
            lprint("Primes p such that Legendre(D,p) = -1: ", NR);
        end if;
    end proc:
    HH(-11,200); # produces the present sequence (A296920), A191060, and A056874.
  • Mathematica
    Reap[For[p = 2, p < 1000, p = NextPrime[p], If[KroneckerSymbol[-11, p] == 1, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Apr 29 2019 *)
  • PARI
    list(lim)=my(v=List()); forprime(p=2,lim, if(kronecker(-11,p)==1, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Mar 18 2018

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Mar 18 2018