This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296921 #15 Oct 13 2022 13:57:25 %S A296921 41,43,47,53,61,71,83,97,113,131,151,167,173,179,197,199,223,227,251, %T A296921 263,281,307,313,347,359,367,373,379,383,397,409,419,421,439,457,461, %U A296921 487,499,503,523,547,563,577,593,607,641,647,653,661,673,677,691,701,709,733,739,743,773,787,797 %N A296921 Rational primes that decompose in the field Q(sqrt(-163)). %C A296921 From _Jianing Song_, Oct 13 2022: (Start) %C A296921 Primes p such that kronecker(-163,p) = 1 (or equivalently, kronecker(p,163) = 1). %C A296921 Primes p such that p^81 == 1 (mod 163). (End) %H A296921 Jianing Song, <a href="/A296921/b296921.txt">Table of n, a(n) for n = 1..10000</a> %H A296921 <a href="/index/Pri#primes_decomp_of">Index to sequences related to decomposition of primes in quadratic fields</a> %p A296921 Load the Maple program HH given in A296920. Then run HH(-163,200); %o A296921 (PARI) isA296921(p) = isprime(p) && kronecker(p,163) == 1 %Y A296921 A257362, the sequence of primes that do not remain inert in the field Q(sqrt(-163)), is essentially the same. %Y A296921 Cf. A296915 (rational primes that remain inert in the field Q(sqrt(-163))). %K A296921 nonn,easy %O A296921 1,1 %A A296921 _N. J. A. Sloane_, Dec 25 2017