cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296930 Inert rational primes in the field Q(sqrt(-17)).

Original entry on oeis.org

5, 19, 29, 37, 41, 43, 47, 59, 61, 67, 73, 83, 97, 103, 109, 113, 127, 151, 173, 179, 181, 191, 193, 197, 223, 233, 239, 241, 251, 263, 269, 271, 277, 307, 313, 317, 331, 337, 359, 383, 397, 401, 443, 449, 463, 467, 491, 521, 523, 541, 563, 587, 599, 601, 617, 631
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Comments

Primes that are congruent to 5, 15, 19, 29, 35, 37, 41, 43, 45, 47, 55, 57, 59, 61, 65, or 67 mod 68. - Amiram Eldar, Nov 17 2023

Crossrefs

Programs

  • Maple
    Load the Maple program HH given in A296920. Then run HH(-17, 200); This produces A296929, A296930, A296931.
  • Mathematica
    Select[Prime[Range[115]], KroneckerSymbol[-17, #] == -1 &] (* Amiram Eldar, Nov 17 2023 *)

A296931 Primes p such that Legendre(-17,p) = 0 or 1.

Original entry on oeis.org

2, 3, 7, 11, 13, 17, 23, 31, 53, 71, 79, 89, 101, 107, 131, 137, 139, 149, 157, 163, 167, 199, 211, 227, 229, 257, 281, 283, 293, 311, 347, 349, 353, 367, 373, 379, 389, 409, 419, 421, 431, 433, 439, 457, 461, 479, 487, 499, 503, 509, 547, 557
Offset: 1

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Comments

Primes p such that p == 1, 2, 3, 7, 9, 11, 13, 17, 21, 23, 25, 27, 31, 33, 39, 49, 53, or 63 (mod 68). - Robert Israel, Dec 26 2017

Programs

  • Maple
    Load the Maple program HH given in A296920. Then run HH(-17, 200); This produces A296929, A296930, A296931.
    Alternative:
    select(p-> isprime(p) and numtheory:-legendre(-17,p)<>-1, [2,seq(i,i=3..1000)]); # Robert Israel, Dec 26 2017
Showing 1-2 of 2 results.