This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296965 #31 May 08 2023 09:35:11 %S A296965 0,1,2,6,14,30,62,126,254,510,1022,2046,4094,8190,16382,32766,65534, %T A296965 131070,262142,524286,1048574,2097150,4194302,8388606,16777214, %U A296965 33554430,67108862,134217726,268435454,536870910,1073741822,2147483646,4294967294,8589934590,17179869182 %N A296965 Expansion of x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)). %C A296965 a(n) = A000225(n)-1, a(0)=0, a(1)=1. Number of quasilinear weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1<...<n and for which {1,...,n} has exactly one maximal element for the quasilinear weak ordering R. %C A296965 Essentially the same as A095121 and A000918. - _R. J. Mathar_, Jan 02 2018 %H A296965 Colin Barker, <a href="/A296965/b296965.txt">Table of n, a(n) for n = 0..1000</a> %H A296965 J. Devillet, <a href="https://arxiv.org/abs/1712.07856">Bisymmetric and quasitrivial operations: characterizations and enumerations</a>, arXiv:1712.07856 [math.RA], 2017-2018. %H A296965 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2). %F A296965 From _Colin Barker_, Dec 22 2017: (Start) %F A296965 G.f.: x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)). %F A296965 a(n) = 2^n - 2 for n>1. %F A296965 a(n) = 3*a(n-1) - 2*a(n-2) for n>3. (End) %F A296965 a(n) = A134067(n-2) for n >= 3. - _Georg Fischer_, Oct 30 2018 %F A296965 E.g.f.: 1 + exp(x)*(exp(x) - 2) + x. - _Stefano Spezia_, May 07 2023 %t A296965 CoefficientList[Series[x (1 - x + 2 x^2)/((1 - x) (1 - 2 x)), {x, 0, 33}], x] (* or *) %t A296965 LinearRecurrence[{3, -2}, {0, 1, 2, 6}, 34] (* _Michael De Vlieger_, Dec 22 2017 *) %o A296965 (PARI) concat(0, Vec(x*(1 - x + 2*x^2) / ((1 - x)*(1 - 2*x)) + O(x^40))) \\ _Colin Barker_, Dec 22 2017 %Y A296965 Cf. A000225, A000918, A095121, A134067. %K A296965 nonn,easy %O A296965 0,3 %A A296965 _J. Devillet_, Dec 22 2017