A296996 Number of nonequivalent (mod D_8) ways to place 3 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.
0, 1, 14, 75, 310, 911, 2373, 5254, 10824, 20305, 36300, 61081, 99294, 154735, 234955, 345836, 498848, 702609, 973674, 1324135, 1776950, 2348511, 3069649, 3961970, 5065800, 6408961, 8043048, 10003189, 12354174, 15139615, 18439575, 22307416, 26840704, 32103905, 38214470
Offset: 1
Links
- Heinrich Ludwig, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,1,-11,6,14,-14,-6,11,-1,-3,1).
Crossrefs
Cf. A296997.
Programs
-
Mathematica
Array[(#^6 - 3 #^4 + 5 #^3 - 4 #^2 + 4 #)/48 + Boole[OddQ@ #] (8 #^3 - 18 #^2 + 7 #)/48 &, 35] (* or *) Rest@ CoefficientList[Series[x^2*(1 + 11 x + 32 x^2 + 82 x^3 + 54 x^4 + 57 x^5 + 2 x^6 + 2 x^7 - x^8)/((1 - x)^7*(1 + x)^4), {x, 0, 35}], x] (* Michael De Vlieger, Jan 12 2018 *)
-
PARI
concat(0, Vec(x^2*(1 + 11*x + 32*x^2 + 82*x^3 + 54*x^4 + 57*x^5 + 2*x^6 + 2*x^7 - x^8) / ((1 - x)^7*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jan 12 2018
Formula
a(n) = (n^6 -3*n^4 +5*n^3 -4*n^2 +4n)/48 + (n == 1 mod 2)*(8*n^3 -18n^2 +7*n)/48.
From Colin Barker, Jan 12 2018: (Start)
G.f.: x^2*(1 + 11*x + 32*x^2 + 82*x^3 + 54*x^4 + 57*x^5 + 2*x^6 + 2*x^7 - x^8) / ((1 - x)^7*(1 + x)^4).
a(n) = (n^6 - 3*n^4 + 5*n^3 - 4*n^2 + 4*n) / 48 for n even.
a(n) = (n^6 - 3*n^4 + 13*n^3 - 22*n^2 + 11*n) / 48 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11) for n>11.
(End)
Comments