cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296996 Number of nonequivalent (mod D_8) ways to place 3 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.

Original entry on oeis.org

0, 1, 14, 75, 310, 911, 2373, 5254, 10824, 20305, 36300, 61081, 99294, 154735, 234955, 345836, 498848, 702609, 973674, 1324135, 1776950, 2348511, 3069649, 3961970, 5065800, 6408961, 8043048, 10003189, 12354174, 15139615, 18439575, 22307416, 26840704, 32103905, 38214470
Offset: 1

Views

Author

Heinrich Ludwig, Jan 12 2018

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A296997.
The condition of placements is also known as "no 3-term arithmetic progressions".

Crossrefs

Cf. A296997.

Programs

  • Mathematica
    Array[(#^6 - 3 #^4 + 5 #^3 - 4 #^2 + 4 #)/48 + Boole[OddQ@ #] (8 #^3 - 18 #^2 + 7 #)/48 &, 35] (* or *)
    Rest@ CoefficientList[Series[x^2*(1 + 11 x + 32 x^2 + 82 x^3 + 54 x^4 + 57 x^5 + 2 x^6 + 2 x^7 - x^8)/((1 - x)^7*(1 + x)^4), {x, 0, 35}], x] (* Michael De Vlieger, Jan 12 2018 *)
  • PARI
    concat(0, Vec(x^2*(1 + 11*x + 32*x^2 + 82*x^3 + 54*x^4 + 57*x^5 + 2*x^6 + 2*x^7 - x^8) / ((1 - x)^7*(1 + x)^4) + O(x^40))) \\ Colin Barker, Jan 12 2018

Formula

a(n) = (n^6 -3*n^4 +5*n^3 -4*n^2 +4n)/48 + (n == 1 mod 2)*(8*n^3 -18n^2 +7*n)/48.
From Colin Barker, Jan 12 2018: (Start)
G.f.: x^2*(1 + 11*x + 32*x^2 + 82*x^3 + 54*x^4 + 57*x^5 + 2*x^6 + 2*x^7 - x^8) / ((1 - x)^7*(1 + x)^4).
a(n) = (n^6 - 3*n^4 + 5*n^3 - 4*n^2 + 4*n) / 48 for n even.
a(n) = (n^6 - 3*n^4 + 13*n^3 - 22*n^2 + 11*n) / 48 for n odd.
a(n) = 3*a(n-1) + a(n-2) - 11*a(n-3) + 6*a(n-4) + 14*a(n-5) - 14*a(n-6) - 6*a(n-7) + 11*a(n-8) - a(n-9) - 3*a(n-10) + a(n-11) for n>11.
(End)