This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A296997 #23 Jan 16 2018 03:15:20 %S A296997 0,4,78,544,2260,7068,18298,41472,85032,161300,287430,486624,789308, %T A296997 1234604,1871730,2761728,3979088,5613732,7772862,10583200,14193060, %U A296997 18774844,24527338,31678464,40487800,51249588,64295478,79997792,98772492,121082700,147441890,178417664 %N A296997 Number of ways to place 3 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column. %C A296997 Rotations and reflections of a placement are counted. If they are to be ignored, see A296996. %C A296997 The condition of placements is also known as "no 3-term arithmetic progressions". %H A296997 Heinrich Ludwig, <a href="/A296997/b296997.txt">Table of n, a(n) for n = 1..256</a> %H A296997 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (5,-8,0,14,-14,0,8,-5,1). %F A296997 a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 - (n == 1 (mod 2))*n/2. %F A296997 a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2)/6 for n even, %F A296997 a(n) = (n^6 - 3*n^4 - 3*n^3 + 8*n^2 - 3*n)/6 for n odd. %F A296997 From _Colin Barker_, Dec 23 2017: (Start) %F A296997 G.f.: 2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2). %F A296997 a(n) = 5*a(n-1) - 8*a(n-2) + 14*a(n-4) - 14*a(n-5) + 8*a(n-7) - 5*a(n-8) + a(n-9) for n>9. %F A296997 (End) %t A296997 Array[(#^6 - 3 #^4 - 3 #^3 + 8 #^2)/6 - # Boole[OddQ@ #]/2 &, 32] (* _Michael De Vlieger_, Dec 23 2017 *) %t A296997 CoefficientList[ Series[-2x (2 + 29x + 93x^2 + 82x^3 + 32x^4 + x^5 + x^6)/((x - 1)^7 (x + 1)^2), {x, 0, 31}], x] (* or *) %t A296997 LinearRecurrence[{5, -8, 0, 14, -14, 0, 8, -5, 1}, {0, 4, 78, 544, 2260, 7068, 18298, 41472, 85032}, 32] (* _Robert G. Wilson v_, Jan 15 2018 *) %o A296997 (PARI) concat(0, Vec(2*x^2*(2 + 29*x + 93*x^2 + 82*x^3 + 32*x^4 + x^5 + x^6) / ((1 - x)^7*(1 + x)^2) + O(x^40))) \\ _Colin Barker_, Dec 23 2017 %Y A296997 Cf. A296468, A296996, A296998. %K A296997 nonn,easy %O A296997 1,2 %A A296997 _Heinrich Ludwig_, Dec 23 2017