cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296998 Number of ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.

Original entry on oeis.org

0, 1, 90, 1620, 11810, 56613, 206234, 623904, 1641654, 3882985, 8431280, 17078364, 32641102, 59401153, 103638420, 174341920, 284041304, 449881893, 694849380, 1049316180, 1552766796, 2255936441, 3223157762, 4535226864, 6292505300, 8618661337, 11664674406, 15613614884
Offset: 1

Views

Author

Heinrich Ludwig, Dec 23 2017

Keywords

Comments

Rotations and reflections of a placement are counted.
The condition of placements is also known as "no 3-term arithmetic progressions".

Crossrefs

Programs

  • Mathematica
    Array[Binomial[#^2, 4] - 2 # (Floor[(# - 1)^2/4] (#^2 - 3) - (5 #^2/12 - 3 #/2 + 1/3 - Boole[Divisible[#, 3]]/3 + 3 Boole[OddQ@ #]/4 + Boole[Mod[#, 4] == 2])) &, 28] (* Michael De Vlieger, Dec 23 2017 *)

Formula

a(n) = binomial(n^2, 4) - (floor((n-1)^2/4)*(n^2-3) - ((5/12)*n^2 - (3/2)*n + 1/3 + (n == 0 mod 3)*(-1/3) + (n == 1 mod 2)*3/4 + (n == 2 mod 4)))*2*n.
a(n) = (n^8 -6*n^6 -12*n^5 +35*n^4 +56*n^3 -150*n^2)/24 + b(n), where
b(n) = 0 for n == 0 mod 12,
b(n) = -n^3/2 +11*n/3 for n == 1, 5, 7, 11 mod 12,
b(n) = 8*n/3 for n == 2, 10 mod 12,
b(n) = -n^3/2 +3*n for n == 3, 9 mod 12,
b(n) = 2*n/3 for n == 4, 8 mod 12,
b(n) = 2*n for n == 6 mod 12.
Conjectures from Colin Barker, Dec 23 2017: (Start)
G.f.: x^2*(1 + 87*x + 1351*x^2 + 7043*x^3 + 23072*x^4 + 52978*x^5 + 95887*x^6 + 138345*x^7 + 166488*x^8 + 164998*x^9 + 137795*x^10 + 94181*x^11 + 52940*x^12 + 23010*x^13 + 7601*x^14 + 1647*x^15 + 251*x^16 + 15*x^17 - 10*x^18) / ((1 - x)^9*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 3*a(n-1) - a(n-2) - 3*a(n-3) + a(n-4) - 3*a(n-5) + 8*a(n-6) - 2*a(n-8) - 2*a(n-9) - 10*a(n-10) + 10*a(n-11) + 2*a(n-12) + 2*a(n-13) - 8*a(n-15) + 3*a(n-16) - a(n-17) + 3*a(n-18) + a(n-19) - 3*a(n-20) + a(n-21) for n>21.
(End)