cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A296999 Number of nonequivalent (mod D_8) ways to place 4 points on an n X n point grid so that no point is equally distant from two other points on the same row or the same column.

Original entry on oeis.org

0, 1, 17, 226, 1550, 7221, 26120, 78484, 206242, 486640, 1056377, 2137506, 4085167, 7430276, 12964014, 21801632, 35520743, 56249658, 86880957, 131186720, 194133425, 282024809, 402949496, 566950056, 786640454, 1077397347, 1458190435, 1951789266, 2585856152, 3393157995
Offset: 1

Views

Author

Heinrich Ludwig, Jan 21 2018

Keywords

Comments

Rotations and reflections of placements are not counted. If they are to be counted see A296998.
The condition of placements is also known as "no 3-term arithmetic progressions".

Crossrefs

Programs

  • Mathematica
    Array[(#^8 - 6 #^6 - 12 #^5 + 64 #^4 + 8 #^3 - 136 #^2 + Boole[OddQ@ #] (14 #^4 - 96 #^3 + 162 #^2 - 92 # + 93))/192 + Boole[Mod[#, 6] == 2] #/6 + Boole[Mod[#, 4] == 2] #/4 + Boole[Mod[#, 6] == 5] (# + 1)/6 &, 30] (* Michael De Vlieger, Jan 21 2018 *)

Formula

a(n) = (n^8 - 6*n^6 - 12*n^5 + 64*n^4 + 8*n^3 - 136*n^2 + (n == 1 (mod 2))*(14*n^4 - 96*n^3 + 162*n^2 - 92*n + 93))/192 + (n == 2 (mod 6))*n/6 + (n == 2 (mod 4))*n/4 + (n == 5 (mod 6))*(n + 1)/6.
a(n) = (n^8 - 6*n^6 - 12*n^5)/192 + b(n) + c(n), where
b(n) = (64*n^4 + 8*n^3 - 136*n^2)/192 for n even,
b(n) = (78*n^4 - 88*n^3 + 26*n^2 - 92*n + 93)/192 for n odd,
c(n) = 0 for n == 0, 1, 3, 4, 7, 9 (mod 12),
c(n) = n/4 for n == 6, 10 (mod 12),
c(n) = n/6 for n == 8 (mod 12),
c(n) = 5/12*n for n == 2 (mod 12),
c(n) = (n + 1)/6 for n == 5, 11 (mod 12).
Conjectures from Colin Barker, Jan 21 2018: (Start)
G.f.: x^2*(1 + 14*x + 176*x^2 + 893*x^3 + 2861*x^4 + 6847*x^5 + 12704*x^6 + 20412*x^7 + 27052*x^8 + 33142*x^9 + 33910*x^10 + 33289*x^11 + 26586*x^12 + 20709*x^13 + 12212*x^14 + 7178*x^15 + 2639*x^16 + 1094*x^17 + 134*x^18 + 68*x^19 - 3*x^20 + 2*x^21) / ((1 - x)^9*(1 + x)^5*(1 - x + x^2)*(1 + x^2)^2*(1 + x + x^2)^2).
a(n) = 3*a(n-1) - a(n-2) - 4*a(n-3) + 4*a(n-4) - 4*a(n-5) + 5*a(n-6) + a(n-7) - 5*a(n-8) + 6*a(n-9) - 10*a(n-10) + 8*a(n-11) - 8*a(n-13) + 10*a(n-14) - 6*a(n-15) + 5*a(n-16) - a(n-17) - 5*a(n-18) + 4*a(n-19) - 4*a(n-20) + 4*a(n-21) + a(n-22) - 3*a(n-23) + a(n-24) for n>24.
(End)