This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297030 #15 Jan 18 2022 05:37:05 %S A297030 0,1,1,2,2,2,1,2,3,3,3,3,3,2,1,2,3,4,4,4,4,4,3,3,4,4,4,3,3,2,1,2,3,4, %T A297030 4,5,5,5,4,4,5,5,5,5,5,4,3,3,4,5,5,5,5,5,4,3,4,4,4,3,3,2,1,2,3,4,4,5, %U A297030 5,5,4,5,6,6,6,6,6,5,4,4,5,6,6,6,6,6 %N A297030 Number of pieces in the list d(m), d(m-1), ..., d(0) of base-2 digits of n; see Comments. %C A297030 The definition of "piece" starts with the base-b digits d(m), d(m-1), ..., d(0) of n. First, an *ascent* is a list (d(i), d(i-1), ..., d(i-h)) such that d(i) < d(i-1) < ... < d(i-h), where d(i+1) >= d(i) if i < m, and d(i-h-1) >= d(i-h) if i > h. A *descent* is a list (d(i), d(i-1), ..., d(i-h)) such that d(i) > d(i-1) > ... > d(i-h), where d(i+1) <= d(i) if i < m, and d(i-h-1) <= d(i-h) if i > h. A *flat* is a list (d(i), d(i-1), ..., d(i-h)), where h > 0, such that d(i) = d(i-1) = ... = d(i-h), where d(i+1) != d(i) if i < m, and d(i-h-1) != d(i-h) if i > h. A *piece* is an ascent, a descent, or a flat. Example: 235621103 has five pieces: (2,3,5,6), (6,2,1), (1,1), (1,0), and (0,3); that's 2 ascents, 2 descents, and 1 flat. For every b, the "piece sequence" includes every positive integer infinitely many times. %H A297030 Clark Kimberling, <a href="/A297030/b297030.txt">Table of n, a(n) for n = 1..10000</a> %e A297030 Base-2 digits for 100: 1, 1, 0, 0, 1, 0, 0, so that a(100) = 6. %t A297030 a[n_, b_] := Length[Map[Length, Split[Sign[Differences[IntegerDigits[n, b]]]]]]; %t A297030 b = 2; Table[a[n, b], {n, 1, 120}] %Y A297030 Cf. A297038, A296712 (rises and falls), A296882 (pits and peaks). %Y A297030 Guide to related sequences: %Y A297030 Base # pieces for n >= 1 %Y A297030 2 A297030 %Y A297030 3 A297031 %Y A297030 4 A297032 %Y A297030 5 A297033 %Y A297030 6 A297034 %Y A297030 7 A297035 %Y A297030 8 A297036 %Y A297030 9 A297037 %Y A297030 10 A297038 %Y A297030 11 A297039 %Y A297030 12 A297040 %Y A297030 13 A297041 %Y A297030 14 A297042 %Y A297030 15 A297043 %Y A297030 16 A297044 %Y A297030 20 A297045 %Y A297030 60 A297046 %K A297030 nonn,easy,base %O A297030 1,4 %A A297030 _Clark Kimberling_, Jan 13 2018