This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297074 #10 Dec 26 2017 18:38:14 %S A297074 0,0,1,1,2,5,10,23,55 %N A297074 Number of ways of inserting parentheses in x^x^...^x (with n x's) whose result is an integer where x = sqrt(2). %C A297074 The largest value that can be obtained by inserting parentheses in x^x^x^x^x^x^x^x^x (9 x's), where x = sqrt(2), is x^(x^((((((x^x)^x)^x)^x)^x)^x)) = 2^128 = 340282366920938463463374607431768211456; this is one of the a(9) = 55 ways of inserting parentheses in x^x^x^x^x^x^x^x^x that yield an integer value. %H A297074 R. K. Guy and J. L. Selfridge, <a href="http://www.jstor.org/stable/2319392">The nesting and roosting habits of the laddered parenthesis</a>, Amer. Math. Monthly 80 (8) (1973), 868-876. %H A297074 R. K. Guy and J. L. Selfridge, <a href="/A003018/a003018.pdf">The nesting and roosting habits of the laddered parenthesis</a> (annotated cached copy, with permission) %H A297074 <a href="/index/Par#parens">Index entries for sequences related to parenthesizing</a> %e A297074 With x = sqrt(2), %e A297074 x = 1.414213... is not an integer, so a(1) = 0; %e A297074 x^x = 1.632526... is not an integer, so a(2) = 0. %e A297074 (x^x)^x = 2 is an integer, but x^(x^x) = 1.760839... is not, so a(3) = 1; %e A297074 ((x^x)^x)^x, (x^x)^(x^x), (x^(x^x))^x, and x^(x^(x^x)) are noninteger values, but x^((x^x)^x) = 2, so a(4) = 1; %e A297074 the only ways of inserting parentheses in x^x^x^x^x that yield integer values are x^(x^((x^x)^x)) = 2 and (((x^x)^x)^x)^x = 4, so a(5) = 2. %t A297074 With[{x = Sqrt@ 2}, Array[Count[#, _?IntegerQ] &@ Map[ToExpression@ StringReplace[ToString@ #, {"{" -> "(", "}" -> ")", "," -> "^"}] &, Groupings[#, 2] /. _Integer -> x] &, 9]] (* _Michael De Vlieger_, Dec 24 2017 *) %Y A297074 Cf. A002845, A055113, A082499, A198683. %K A297074 nonn,more %O A297074 1,5 %A A297074 _Jon E. Schoenfield_, Dec 24 2017