This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297137 #11 Jan 18 2018 16:26:19 %S A297137 9,10,11,12,13,17,18,19,20,25,26,27,33,34,41,63,64,66,67,68,69,70,71, %T A297137 72,74,75,76,77,78,79,80,82,83,84,85,86,87,88,90,91,92,93,94,95,96, %U A297137 119,120,121,123,124,125,126,127,128,129,131,132,133,134,135,136 %N A297137 Numbers having an up-first zigzag pattern in base 7; see Comments. %C A297137 A number n having base-b digits d(m), d(m-1),..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297137-A297139 partition the natural numbers. See the guide at A297146. %H A297137 Robert Israel, <a href="/A297137/b297137.txt">Table of n, a(n) for n = 1..10000</a> %e A297137 Base-7 digits of 4751: 1,6,5,6,5, with pattern UDUD, so that 4751 is in the sequence. %p A297137 read("transforms") : %p A297137 isA297137 := proc(n) %p A297137 local dgs,ud; %p A297137 dgs := convert(n,base,7) ; %p A297137 if nops(dgs) < 2 then %p A297137 return false; %p A297137 end if; %p A297137 ud := DIFF(dgs) ; %p A297137 if 0 in ud then %p A297137 return false; %p A297137 else %p A297137 simplify( op(-1,ud) < 0) ; %p A297137 end if; %p A297137 end proc: %p A297137 for n from 1 to 200 do %p A297137 if isA297137(n) then %p A297137 printf("%d,",n) ; %p A297137 end if; %p A297137 end do: # _R. J. Mathar_, Jan 18 2018 %t A297137 a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300; %t A297137 b = 7; t = Table[a[n, b], {n, 1, 10*z}]; %t A297137 u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297137 *) %t A297137 v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297138 *) %t A297137 Complement[Range[z], Union[u, v]] (* A297139 *) %Y A297137 Cf. A297138, A297139. %K A297137 nonn,easy,base %O A297137 1,1 %A A297137 _Clark Kimberling_, Jan 15 2018