A297142 Numbers whose base-8 digits d(m), d(m-1),..., d(0) have m=0 or else d(i) = d(i+1) for some i in {0,1,...,m-1}.
1, 2, 3, 4, 5, 6, 7, 9, 18, 27, 36, 45, 54, 63, 64, 72, 73, 74, 75, 76, 77, 78, 79, 82, 91, 100, 109, 118, 127, 128, 137, 144, 145, 146, 147, 148, 149, 150, 151, 155, 164, 173, 182, 191, 192, 201, 210, 216, 217, 218, 219, 220, 221, 222, 223, 228, 237, 246
Offset: 1
Examples
Base-8 digits of 5000: 1,1,6,1,0, so that 5000 is in the sequence.
Programs
-
Maple
read("transforms") : isA297142 := proc(n) local dgs,ud; dgs := convert(n,base,8) ; if nops(dgs) < 2 then return true; end if; if 0 in DIFF(dgs) then true; else false; end if; end proc: for n from 1 to 300 do if isA297142(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jan 18 2018
-
Mathematica
a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300; b = 8; t = Table[a[n, b], {n, 1, 10*z}]; u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297140 *) v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297141 *) Complement[Range[z], Union[u, v]] (* A297142 *)
Comments