This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297146 #6 Jan 15 2018 15:31:05 %S A297146 12,13,14,15,16,17,18,19,23,24,25,26,27,28,29,34,35,36,37,38,39,45,46, %T A297146 47,48,49,56,57,58,59,67,68,69,78,79,89,120,121,123,124,125,126,127, %U A297146 128,129,130,131,132,134,135,136,137,138,139,140,141,142,143,145 %N A297146 Numbers having an up-first zigzag pattern in base 10; see Comments. %C A297146 A number n having base-b digits d(m), d(m-1),..., d(0) such that d(i) != d(i+1) for 0 <= i < m shows a zigzag pattern of one or more segments, in the following sense. Writing U for up and D for down, there are two kinds of patterns: U, UD, UDU, UDUD, ... and D, DU, DUD, DUDU, ... . In the former case, we say n has an "up-first zigzag pattern in base b"; in the latter, a "down-first zigzag pattern in base b". Example: 2,4,5,3,0,1,4,2 has segments 2,4,5; 5,3,0; 0,1,4; and 4,2, so that 24530142, with pattern UDUD, has an up-first zigzag pattern in base 10, whereas 4,2,5,3,0,1,4,2 has a down-first pattern. The sequences A297146-A297148 partition the natural numbers. In the following guide, column four, "complement" means the sequence of natural numbers not in the corresponding sequences in columns 2 and 3. %C A297146 *** %C A297146 Base up-first down-first complement %C A297146 2 (none) A000975 A107907 %C A297146 3 A297124 A297125 A297126 %C A297146 4 A297128 A297129 A297130 %C A297146 5 A297131 A297132 A297133 %C A297146 6 A297134 A297135 A297136 %C A297146 7 A297137 A297138 A297139 %C A297146 8 A297140 A297141 A297142 %C A297146 9 A297143 A297144 A297145 %C A297146 10 A297146 A297147 A297148 %e A297146 Base-10 digits of 59898: 5,9,8,9,8, with pattern UDUD, so that 59898 is in the sequence. %t A297146 a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300; %t A297146 b = 10; t = Table[a[n, b], {n, 1, 10*z}]; %t A297146 u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &] (* A297146 *) %t A297146 v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &] (* A297147 *) %t A297146 Complement[Range[z], Union[u, v]] (* A297148 *) %Y A297146 Cf. A297147, A297148. %K A297146 nonn,easy,base %O A297146 1,1 %A A297146 _Clark Kimberling_, Jan 15 2018