cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297148 Numbers whose base-10 digits d(m), d(m-1),..., d(0) have m=0 or else d(i) = d(i+1) for some i in {0,1,...,m-1}.

This page as a plain text file.
%I A297148 #8 Jan 18 2018 07:51:35
%S A297148 1,2,3,4,5,6,7,8,9,11,22,33,44,55,66,77,88,99,100,110,111,112,113,114,
%T A297148 115,116,117,118,119,122,133,144,155,166,177,188,199,200,211,220,221,
%U A297148 222,223,224,225,226,227,228,229,233,244,255,266,277,288,299,300
%N A297148 Numbers whose base-10 digits d(m), d(m-1),..., d(0) have m=0 or else d(i) = d(i+1) for some i in {0,1,...,m-1}.
%C A297148 These numbers comprise the complement of the set of numbers in the union of A297146 and A297147.
%C A297148 Differs from A044821 first for 1001, which is in this sequence but not in A044821. - _R. J. Mathar_, Jan 17 2018
%e A297148 Base-10 digits of 65536: 6,5,5,3,6, so that 65536 is in the sequence.
%p A297148 read("transforms") :
%p A297148 isA297148 := proc(n)
%p A297148     local dgs,ud;
%p A297148     dgs := convert(n,base,10) ;
%p A297148     if nops(dgs) < 2 then
%p A297148         return true;
%p A297148     end if;
%p A297148     if 0 in DIFF(dgs) then
%p A297148         true;
%p A297148     else
%p A297148         false;
%p A297148     end if;
%p A297148 end proc:
%p A297148 for n from 1 to 300 do
%p A297148     if isA297148(n) then
%p A297148         printf("%d,",n) ;
%p A297148     end if;
%p A297148 end do: # _R. J. Mathar_, Jan 18 2018
%t A297148 a[n_, b_] := Sign[Differences[IntegerDigits[n, b]]]; z = 300;
%t A297148 b = 10; t = Table[a[n, b], {n, 1, 10*z}];
%t A297148 u = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == 1 &]   (* A297146 *)
%t A297148 v = Select[Range[z], ! MemberQ[t[[#]], 0] && First[t[[#]]] == -1 &]  (* A297147 *)
%t A297148 Complement[Range[z], Union[u, v]]  (* A297148 *)
%Y A297148 Cf. A297146, A297147.
%K A297148 nonn,easy,base
%O A297148 1,2
%A A297148 _Clark Kimberling_, Jan 15 2018