This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297149 #4 Apr 24 2018 12:10:59 %S A297149 4,11,26,46,69,95,124,158,196,239,286,336,389,445,504,566,631,699,770, %T A297149 844,923,1006,1092,1181,1273,1370,1471,1575,1682,1792,1905,2021,2140, %U A297149 2262,2387,2515,2646,2780,2919,3062,3208,3357,3509,3664,3824,3988,4155,4325 %N A297149 Solution (c(n)) of the system of 3 complementary equations in Comments. %C A297149 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 4: %C A297149 a(n) = least new; %C A297149 b(n) = a(n-1)+c(n-1); %C A297149 c(n) = 2 a(n) + b(n); %C A297149 where "least new k" means the least positive integer not yet placed. The sequences a,b,c partition the positive integers. %H A297149 Clark Kimberling, <a href="/A297149/b297149.txt">Table of n, a(n) for n = 0..1000</a> %e A297149 n: 0 1 2 3 4 5 6 7 8 9 %e A297149 a: 1 3 6 7 8 9 10 12 13 15 %e A297149 b: 2 5 14 32 53 77 104 134 170 209 %e A297149 c: 4 11 26 46 69 95 124 158 196 239 %t A297149 z = 300; %t A297149 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A297149 a = {1}; b = {2}; c = {4}; n = 1; %t A297149 Do[{n++, AppendTo[a, mex[Flatten[{a, b, c}], 1]], %t A297149 AppendTo[b, a[[n - 1]] + c[[n - 1]]], %t A297149 AppendTo[c, 2 Last[a] + Last[b]]}, {z}]; %t A297149 Take[a, 100] (* A296484 *) %t A297149 Take[b, 100] (* A296502 *) %t A297149 Take[c, 100] (* A297149 *) %Y A297149 Cf. A299634, A296484, A296502. %K A297149 nonn,easy %O A297149 0,1 %A A297149 _Clark Kimberling_, Apr 24 2018