cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297151 a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} binomial(n,i)*binomial(n,j)*binomial(n,k)*max(i,j,k).

This page as a plain text file.
%I A297151 #9 Nov 24 2018 15:09:41
%S A297151 0,7,100,1128,11552,112160,1052544,9646336,86877184,772010496,
%T A297151 6787635200,59163619328,512002867200,4404129513472,37687664508928,
%U A297151 321065313239040,2724508666953728,23040146455789568,194245982204461056,1633162428477865984,13697353473127874560
%N A297151 a(n) = Sum_{i=0..n} Sum_{j=0..n} Sum_{k=0..n} binomial(n,i)*binomial(n,j)*binomial(n,k)*max(i,j,k).
%C A297151 The given closed-form formula is provable.
%F A297151 a(n) = n*2^(3*n-1) + 3*n*2^(n-2)*binomial(2*n, n).
%t A297151 Table[n*2^(3n-1)+3n*2^(n-2) Binomial[2n,n],{n,0,20}] (* _Harvey P. Dale_, Nov 24 2018 *)
%Y A297151 Analogous nested sum with only two levels: A100511, and with only one level: A001787.
%K A297151 nonn
%O A297151 0,2
%A A297151 _Ognjen Dragoljevic_, Dec 26 2017