cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297178 Triangle read by rows: T(n,k) = number of partitions of genus 2 of n elements with k parts (n >= 6, 2 <= k <= n-4).

Original entry on oeis.org

1, 7, 21, 28, 210, 161, 84, 1134, 2184, 777, 210, 4410, 15330, 13713, 2835, 462, 13860, 75075, 121275, 63063, 8547, 924, 37422, 289905, 729960, 685608, 233772, 22407, 1716, 90090, 942942, 3396393, 4972968, 3063060, 738738, 52767, 3003, 198198, 2690688, 13096083, 27432405, 26342316, 11477466, 2063061, 114114
Offset: 6

Views

Author

N. J. A. Sloane, Dec 26 2017

Keywords

Examples

			Triangle begins (see Table 3.2 in Yip's thesis):
    1;
    7,    21;
   28,   210,    161;
   84,  1134,   2184,    777;
  210,  4410,  15330,  13713,   2835;
  462, 13860,  75075, 121275,  63063,   8547;
  924, 37422, 289905, 729960, 685608, 233772, 22407;
  ...
		

Crossrefs

Row sums are A297179.
First column is A000579.

Programs

  • Mathematica
    T[n_,k_]:=((-6*(-2 + n)*(-1 + n) - k^2*(-13 + 5*n) + k*(-8 + n*(-9 + 5*n)))*(-4 + n)!*n!)/(1440*(-2 + k)!*k!*(-4 - k + n)!*(-k + n)!) (* Robert Coquereaux, Mar 05 2024 *)

Formula

T(n,k) = 8*gam(n-10,k-6) -4*gam(n-10,k-5) -15*gam(n-10,k-4) +10*gam(n-10,k-3) +gam(n-10,k-2) -4*gam(n-9,k-5) +39*gam(n-9,k-4) -10*gam(n-9,k-3) -4*gam(n-9,k-2) -15*gam(n-8,k-4) -10*gam(n-8,k-3) +6*gam(n-8,k-2) -4*gam(n-7,k-2) +10*gam(n-7,k-3) +gam(n-6,k-2) with gam(n,k) = (binomial(n+10,5) * binomial(n+5,k) * binomial(n+5,n-k)) / binomial(10,5) [Cori & Hetyei]. - Robert Coquereaux, Feb 12 2024
T(n,k) = ((-6*(-2 + n)*(-1 + n) - k^2*(-13 + 5*n) + k*(-8 + n*(-9 + 5*n)))*(-4 + n)!*n!) / (1440*(-2 + k)!*k!*(-4 - k + n)!*(-k + n)!). - Robert Coquereaux, Mar 05 2024