A297179 Number of genus-2 partitions of [n].
1, 28, 399, 4179, 36498, 282282, 1999998, 13258674, 83417334, 503090588, 2929953026, 16569715890, 91386952020, 493234934220, 2612295374940, 13607257868820, 69841333755270, 353777814426960, 1770937330172010, 8770508370593970, 43015147164809820, 209104302965011740
Offset: 6
Keywords
Links
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 5.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 9.
- Robert Cori and G. Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
Programs
-
Mathematica
a[n_] := (2^(n - 9) (88 n - 39 n^2 + 5 n^3 - 84) (2 n - 9)!!) / (45 (n - 6)!); Table[a[n], {n, 6, 27}] (* Peter Luschny, Feb 13 2024 *)
Formula
From Robert Coquereaux, Feb 12 2024: (Start)
a(n) = (1/(2^9*3^2*5)) * ((-84 + 88*n - 39*n^2 + 5*n^3) /((2*n - 1) * (2*n - 3) * (2*n - 5) * (2*n - 7))) * (1/(n - 6)!) * ((2*n)!/n!).
E.g.f.: (1/720) * exp(2*x) *(x^2*(-6 + 6*x - 9*x^2 + 5*x^3)*BesselI(0, 2*x) + x*(6 - 6*x + 12*x^2 - 8*x^3 + 5*x^4)*BesselI(1, 2*x)). (End)
Comments