A297181 a(n) is the smallest positive integer of length (distance from origin) n in the Cayley graph of the integers generated by all powers of 11.
1, 2, 3, 4, 5, 6, 17, 28, 39, 50, 61, 182, 303, 424, 545, 666, 1997, 3328, 4659, 5990, 7321, 21962, 36603, 51244, 65885, 80526, 241577, 402628, 563679, 724730, 885781, 2657342, 4428903, 6200464, 7972025, 9743586, 29230757, 48717928, 68205099, 87692270
Offset: 1
Keywords
Links
- Lars Blomberg, Table of n, a(n) for n = 1..1000
- G. Bell, A. Lawson, N. Pritchard, and D. Yasaki, Locally infinite Cayley graphs of the integers, arXiv:1711.00809 [math.GT], 2017.
Formula
Conjectures from Colin Barker, Dec 28 2017: (Start)
G.f.: x*(1 + x + x^2 + x^3 + x^4 - 10*x^5) / ((1 - x)*(1 - 11*x^5)).
a(n) = a(n-1) + 11*a(n-5) - 11*a(n-6) for n>5.
(End)
The second conjecture by Colin Barker is true up to n=1000. - Lars Blomberg, Dec 29 2017
Extensions
Terms a(21) and beyond from Lars Blomberg, Dec 29 2017