cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297195 Number of bitriangular permutations (row sums of A272644 if that triangle is prefixed with two rows for n=0,1).

This page as a plain text file.
%I A297195 #19 Oct 18 2024 20:18:11
%S A297195 1,0,1,2,7,28,133,726,4483,30896,235105,1957930,17712799,172980804,
%T A297195 1813760317,20323234814,242353047355,3064550705752,40958281206169,
%U A297195 576917769130578,8541793624670551,132623408805525740,2154730841214003061,36560670776303600422,646697046042017004787
%N A297195 Number of bitriangular permutations (row sums of A272644 if that triangle is prefixed with two rows for n=0,1).
%C A297195 Define c(n) = Sum_{m=2..n-1} C(n-1, m-1)^(-2). Define b(1) = x and b(n+1) = b(n) + (Sum_{m=2..n-1} b(m)*b(n+1-m)*C(n-1, m-1)^(-2))/n^2 for n>0. Then b(n) is a polynomial in x and so is (b(n+1)-b(n))/x^2 whose constant term is c(n)/n^2. The Hone et.al.[2002] link denotes x with alpha_2 and alpha_k = (k-1)!^2*b(k). Conjecture: Asymptotic expansion of c(n) = 2*Sum_{i>1} a(i)/n^i. - _Michael Somos_, Oct 17 2024
%H A297195 A.N.W. Hone, N. Joshi and A.V. Kitaev, <a href="https://doi.org/10.1112/S0024610702003423">An Entire Function Defined by a Nonlinear Recurrence Relation</a>, J. of the London Math. Soc., Oct. 2002, vol. 66, iss. 2, pp. 377-387.
%H A297195 Irving Kaplansky and John Riordan, <a href="http://projecteuclid.org/euclid.dmj/1077473616">The problem of the rooks and its applications</a>, Duke Mathematical Journal 13.2 (1946): 259-268. The array is on page 267.
%H A297195 Irving Kaplansky and John Riordan, <a href="/A274105/a274105.pdf">The problem of the rooks and its applications</a>, in Combinatorics, Duke Mathematical Journal, 13.2 (1946): 259-268. [Annotated scanned copy]
%e A297195 G.f. = 1 + x^2 + 2*x^3 + 7*x^4 + 28*x^5 + 133*x^6 + 726*x^7 + ... - _Michael Somos_, Oct 17 2024
%p A297195 A297195 := proc(n)
%p A297195     add(A272644(n, m), m=0..n) ;
%p A297195 end proc:
%p A297195 seq(A297195(n), n=0..30) ; # _R. J. Mathar_, Mar 04 2018
%t A297195 A272644[n_, m_] := Sum[StirlingS2[m+1, i+1] (-1)^(m-i) i^(n-m) i!, {i, 0, m}];
%t A297195 a[n_] := If[n == 1, 1, Sum[A272644[n, m], {m, 1, n-1}]];
%t A297195 Array[a, 24] (* _Jean-François Alcover_, Apr 03 2020 *)
%o A297195 (PARI) {a(n) = if(n<2, n==0, sum(m=1, n-1, sum(i=0, m, (-1)^(m-i)*i^(n-m)*i!*stirling(m+1, i+1, 2))))}; /* _Michael Somos_, Oct 17 2024 */
%Y A297195 Cf. A272644.
%K A297195 nonn,easy
%O A297195 0,4
%A A297195 _N. J. A. Sloane_, Jan 10 2018
%E A297195 Some terms corrected by _Alois P. Heinz_, Oct 17 2024