cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297214 Expansion of e.g.f. exp(cos(sin(x))-1) (even powers only).

This page as a plain text file.
%I A297214 #5 Dec 27 2017 15:21:44
%S A297214 1,-1,8,-127,3523,-146964,8538477,-655457233,63974756924,
%T A297214 -7713566822979,1123255462229507,-193995005614903728,
%U A297214 39147722262966666217,-9115873617718182207793,2423565558533387761866928,-728969374928760685473620951,246100624914698937364249220851
%N A297214 Expansion of e.g.f. exp(cos(sin(x))-1) (even powers only).
%F A297214 a(n) = (2*n)! * [x^(2*n)] exp(cos(sin(x))-1).
%e A297214 exp(cos(sin(x))-1) = 1 - x^2/2! + 8*x^4/4! - 127*x^6/6! + 3523*x^8/8! - 146964*x^10/10! + ...
%t A297214 nmax = 16; Table[(CoefficientList[Series[Exp[Cos[Sin[x]] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
%Y A297214 Cf. A003709, A009045, A009201, A009202, A009203, A009204, A009238, A009239, A009240, A009241, A009254, A297215.
%K A297214 sign
%O A297214 0,3
%A A297214 _Ilya Gutkovskiy_, Dec 27 2017