This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297224 #4 Dec 27 2017 15:38:02 %S A297224 1,2,1,3,4,1,4,8,9,1,6,16,24,19,1,9,33,57,68,41,1,13,69,182,207,196, %T A297224 88,1,19,145,535,997,751,564,189,1,28,300,1513,4210,5570,2720,1620, %U A297224 406,1,41,624,4415,16658,33158,30946,9861,4660,872,1,60,1300,12832,68769,178469 %N A297224 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 1 neighboring 1s. %C A297224 Table starts %C A297224 .1...2.....3......4.......6.........9.........13..........19............28 %C A297224 .1...4.....8.....16......33........69........145.........300...........624 %C A297224 .1...9....24.....57.....182.......535.......1513........4415.........12832 %C A297224 .1..19....68....207.....997......4210......16658.......68769........284867 %C A297224 .1..41...196....751....5570.....33158.....178469.....1051514.......6152761 %C A297224 .1..88...564...2720...30946....261939....1918732....16176806.....134671502 %C A297224 .1.189..1620...9861..171851...2063378...20599895...248421807....2936448567 %C A297224 .1.406..4660..35741..955316..16277793..221333623..3819208252...64142817874 %C A297224 .1.872.13396.129540.5308160.128351805.2377449633.58680928294.1400212345305 %H A297224 R. H. Hardin, <a href="/A297224/b297224.txt">Table of n, a(n) for n = 1..611</a> %F A297224 Empirical for column k: %F A297224 k=1: a(n) = a(n-1) %F A297224 k=2: a(n) = a(n-1) +2*a(n-2) +a(n-3) %F A297224 k=3: a(n) = a(n-1) +4*a(n-2) +4*a(n-3) %F A297224 k=4: a(n) = a(n-1) +6*a(n-2) +11*a(n-3) +6*a(n-4) +a(n-5) %F A297224 k=5: [order 9] %F A297224 k=6: [order 11] for n>13 %F A297224 k=7: [order 16] for n>21 %F A297224 Empirical for row n: %F A297224 n=1: a(n) = a(n-1) +a(n-3) %F A297224 n=2: a(n) = a(n-1) +a(n-2) +2*a(n-3) +a(n-4) +a(n-5) -a(n-6) %F A297224 n=3: [order 13] %F A297224 n=4: [order 27] %F A297224 n=5: [order 60] %e A297224 Some solutions for n=5 k=4 %e A297224 ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..1..0 %e A297224 ..0..0..1..0. .0..0..0..0. .0..1..0..0. .0..1..0..0. .0..0..0..0 %e A297224 ..0..1..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..0. .0..1..0..0 %e A297224 ..0..1..1..0. .1..0..0..1. .0..1..1..0. .0..0..1..1. .1..0..0..0 %e A297224 ..0..0..0..0. .0..0..1..0. .0..0..1..1. .0..0..0..0. .0..1..1..0 %Y A297224 Column 2 is A078039. %Y A297224 Row 1 is A000930(n+1). %Y A297224 Row 2 is A264166. %K A297224 nonn,tabl %O A297224 1,2 %A A297224 _R. H. Hardin_, Dec 27 2017