cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297262 Numbers whose base-7 digits have equal up-variation and down-variation; see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 16, 24, 32, 40, 48, 50, 57, 64, 71, 78, 85, 92, 100, 107, 114, 121, 128, 135, 142, 150, 157, 164, 171, 178, 185, 192, 200, 207, 214, 221, 228, 235, 242, 250, 257, 264, 271, 278, 285, 292, 300, 307, 314, 321, 328, 335, 342, 344, 351, 358
Offset: 1

Views

Author

Clark Kimberling, Jan 15 2018

Keywords

Comments

Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.

Examples

			358 in base-7:  1,0,2,1, having DV = 2, UV = 2, so that 358 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
    x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
    b = 7; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
    w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
    Take[Flatten[Position[w, -1]], 120]   (* A297261 *)
    Take[Flatten[Position[w, 0]], 120]    (* A297262 *)
    Take[Flatten[Position[w, 1]], 120]    (* A297263 *)