cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297286 Numbers whose base-15 digits have equal down-variation and up-variation; see Comments.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 226, 241, 256, 271, 286, 301, 316, 331, 346, 361, 376, 391, 406, 421, 436, 452, 467, 482, 497, 512, 527, 542, 557, 572, 587, 602, 617, 632, 647
Offset: 1

Views

Author

Clark Kimberling, Jan 17 2018

Keywords

Comments

Suppose that n has base-b digits b(m), b(m-1), ..., b(0). The base-b down-variation of n is the sum DV(n,b) of all d(i)-d(i-1) for which d(i) > d(i-1); the base-b up-variation of n is the sum UV(n,b) of all d(k-1)-d(k) for which d(k) < d(k-1). The total base-b variation of n is the sum TV(n,b) = DV(n,b) + UV(n,b). See the guide at A297330.
Differs from A029960 after the zero first for 3391 = 1011_15, which is not in A029960 but in this sequence. - R. J. Mathar, Jan 23 2018

Examples

			647 in base-15:  2,13,2 having DV = 11, UV = 11, so that 647 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    g[n_, b_] := Map[Total, GatherBy[Differences[IntegerDigits[n, b]], Sign]];
    x[n_, b_] := Select[g[n, b], # < 0 &]; y[n_, b_] := Select[g[n, b], # > 0 &];
    b = 15; z = 2000; p = Table[x[n, b], {n, 1, z}]; q = Table[y[n, b], {n, 1, z}];
    w = Sign[Flatten[p /. {} -> {0}] + Flatten[q /. {} -> {0}]];
    Take[Flatten[Position[w, -1]], 120]   (* A297285 *)
    Take[Flatten[Position[w, 0]], 120]    (* A297286 *)
    Take[Flatten[Position[w, 1]], 120]    (* A297287 *)