cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297292 Solution (b(n)) of the system of 3 complementary equations in Comments.

Original entry on oeis.org

3, 6, 7, 11, 14, 15, 19, 20, 23, 25, 29, 30, 34, 36, 39, 40, 43, 46, 49, 50, 53, 55, 59, 60, 64, 65, 69, 70, 73, 75, 79, 80, 83, 86, 87, 91, 92, 95, 99, 100, 103, 106, 109, 110, 113, 115, 119, 120, 124, 126, 129, 130, 133, 135, 139, 140, 143, 146, 149, 150
Offset: 0

Views

Author

Clark Kimberling, Apr 24 2018

Keywords

Comments

Define sequences a(n), b(n), c(n) recursively:
a(n) = least new;
b(n) = least new > = a(n) + 2;
c(n) = a(n) + b(n) - 2;
where "least new k" means the least positive integer not yet placed.
***
The sequences a,b,c partition the positive integers.
***
Conjectures: for n >= 0,
0 <= 5*n + 4 - 2*a(n) <= 5,
0 <= 5*n + 8 - 2*b(n) <= 4,
0 <= c(n) - 5n <= 4.

Examples

			n:   0   1   2   3   4   5   6   7   8   9  10
a:   1   4   5   9  12  13  16  17  21  27  28
b:   3   6   7  11  14  15  19  20  23  25  29
c:   2   8  10  18  24  26  33  35  42  45  54
		

Crossrefs

Programs

  • Mathematica
    z = 300;
    mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]);
    a = b = c = {};
    Do[{AppendTo[a,
        mex[Flatten[{a, b, c}], If[Length[a] == 0, 1, Last[a]]]],
       AppendTo[b, mex[Flatten[{a, b, c}], Last[a] + 2]],
       AppendTo[c, Last[a] + Last[b] - 2]}, {z}];
    Take[a, 100]  (* A297291 *)
    Take[b, 100]  (* A297292 *)
    Take[c, 100]  (* A297293 *)
    (* Peter J. C. Moses, Apr 23 2018 *)