A297296 Number of n X 5 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 2 neighboring 1s.
1, 4, 9, 21, 49, 114, 266, 620, 1446, 3372, 7864, 18340, 42772, 99752, 232640, 542560, 1265352, 2951040, 6882384, 16051024, 37434032, 87303264, 203607776, 474851968, 1107444896, 2582771648, 6023513600, 14047976768, 32762547648, 76408478336
Offset: 1
Keywords
Examples
Some solutions for n=5: ..0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..1..1 ..0..0..1..1..0. .0..0..1..1..1. .0..0..0..0..0. .0..0..1..1..0 ..0..1..1..0..0. .0..1..0..1..0. .0..0..0..0..0. .0..0..0..1..1 ..0..0..0..0..0. .1..1..1..0..0. .0..0..0..1..1. .0..0..1..1..0 ..0..0..0..0..0. .0..0..0..0..0. .0..0..1..1..0. .0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Column 5 of A297299.
Formula
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - 2*a(n-4) for n>5.
Empirical g.f.: x*(1 + x)*(1 + x - 2*x^2 - x^3) / (1 - 2*x - 2*x^2 + 2*x^3 + 2*x^4). - Colin Barker, Feb 26 2019