A297299 T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 2 neighboring 1s.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 5, 5, 1, 1, 1, 6, 9, 10, 8, 1, 1, 1, 9, 17, 21, 19, 13, 1, 1, 1, 13, 32, 50, 49, 36, 21, 1, 1, 1, 19, 60, 130, 157, 114, 69, 34, 1, 1, 1, 28, 113, 332, 600, 495, 266, 131, 55, 1, 1, 1, 41, 213, 840, 2161, 2816, 1574, 620, 250, 89, 1, 1, 1
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..1..1..0 ..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..1..1..0. .1..1..0..0 ..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..1..1. .0..0..0..0 ..0..0..1..1. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0 ..0..1..1..0. .0..0..0..0. .1..1..0..0. .0..0..0..0. .1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..680
Formula
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = a(n-1) +a(n-2)
k=4: a(n) = a(n-1) +2*a(n-2) -a(n-4)
k=5: a(n) = 2*a(n-1) +2*a(n-2) -2*a(n-3) -2*a(n-4) for n>5
k=6: a(n) = 4*a(n-1) -8*a(n-3) -2*a(n-4) +4*a(n-5) +4*a(n-6) +a(n-7) -a(n-8)
k=7: [order 12] for n>14
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = a(n-1) +a(n-3)
n=3: a(n) = 2*a(n-1) -a(n-2) +2*a(n-3) -a(n-4) for n>6
n=4: [order 13] for n>16
n=5: [order 32] for n>37
n=6: [order 68] for n>76
Comments