This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297306 #48 Nov 27 2020 02:08:14 %S A297306 7,43,79,163,673,853,919,1063,1429,1549,1663,2143,2683,3229,3499,4993, %T A297306 5119,5653,5779,6229,6343,7333,7459,7669,8353,8539,8719,9829,10009, %U A297306 10243,10303,11383,11689,12583,13399,14149,14653,14923,15649,16603,17053,17389,17749 %N A297306 Primes p such that q = 4*p+1 and r = (2*p+1)/3 are also primes. %C A297306 This sequence was suggested by _Moshe Shmuel Newman_. It has its source in his study of finite groups. %H A297306 Alois P. Heinz, <a href="/A297306/b297306.txt">Table of n, a(n) for n = 1..10000</a> %e A297306 Prime p = 7 is in the sequence because q = 4*7+1 = 29 and r = (2*7+1)/3 = 5 are also primes. %p A297306 a:= proc(n) option remember; local p; p:= `if`(n=1, 1, a(n-1)); %p A297306 do p:= nextprime(p); if irem(p, 3)=1 and %p A297306 isprime(4*p+1) and isprime((2*p+1)/3) then break fi %p A297306 od; p %p A297306 end: %p A297306 seq(a(n), n=1..50); # _Alois P. Heinz_, Jan 07 2018 %t A297306 a[n_] := a[n] = Module[{p}, p = If[n == 1, 1, a[n-1]]; While[True, p = NextPrime[p]; If[Mod[p, 3] == 1 && PrimeQ[4p+1] && PrimeQ[(2p+1)/3], Break[]]]; p]; %t A297306 Array[a, 50] (* _Jean-François Alcover_, Nov 27 2020, after _Alois P. Heinz_ *) %o A297306 (PARI) isok(p) = isprime(p) && isprime(4*p+1) && iferr(isprime((2*p+1)/3), E, 0); \\ _Michel Marcus_, Nov 27 2020 %Y A297306 Cf. A000040. %Y A297306 Intersection of A023212 and A104163. %K A297306 nonn %O A297306 1,1 %A A297306 _David S. Newman_, Jan 04 2018 %E A297306 More terms from _Alois P. Heinz_, Jan 07 2018