This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297345 #65 May 24 2021 08:00:23 %S A297345 0,1,2,7,24,85,285,1143,6268,216784,1059813,6100794,226303113 %N A297345 a(0)=0; for n>0, a(n) is the least positive integer that cannot be represented as Sum_{k=1..n-1} a(i_k)*a(k), with 0 <= i_k < n. %e A297345 a(1)= 1 since it is not possible to write 1 using only a(0). a(2)=2, since it is not possible to obtain 2 using only a(0) and a(1). The following numbers up to 6 can be represented using these first 3 elements of the sequence: 3 = 1*1 + 1*2, 4 = 0*1 + 2*2, 5 = 1*1 + 2*2, 6 = 2*1 + 2*2. Again we reach a number that cannot be represented as defined above, so that number is appended to the sequence. It happens here when we try to represent 7 using only a(0)=0, a(1)=1, and a(2)=2. So 7 becomes a(3). %e A297345 A larger example: 216752 = 1*1 + 1*2 + 85*7 + 285*24 + 85*85 + 85*285 + 24*1143 + 24*6268 %t A297345 Nest[Function[a, Append[a, 1 + LengthWhile[Differences@ #, # == 1 &] &@ Union[Total /@ Map[a # &, Tuples[a, Length@ a]]]]], {0}, 8] (* _Michael De Vlieger_, Jan 09 2018 *) %o A297345 (Python) %o A297345 # Generate all the elements in the sequence, S, necessary to represent all %o A297345 # numbers until the integer 'last'. It also shows how each integer is %o A297345 # represented by showing the sequence elements and the respective %o A297345 # multiplicative factors. %o A297345 import numpy as np %o A297345 import itertools %o A297345 last=100 %o A297345 def generate(i,S): %o A297345 n=len(S) %o A297345 s=np.asarray(S,dtype=np.int) %o A297345 perms = [p for p in itertools.product(S, repeat=n)] %o A297345 for iks in perms: %o A297345 t=np.asarray(iks) %o A297345 if np.dot(t,s) == i: %o A297345 print('%d=' %i, end=',') %o A297345 print(t,'x',s) %o A297345 return 0 %o A297345 return -1 %o A297345 S=[0] %o A297345 for i in range(1,last+1): %o A297345 if generate(i,S) == -1: %o A297345 S.append(i) %o A297345 generate(i,S) %K A297345 nonn,more,hard %O A297345 0,3 %A A297345 _Luis F.B.A. Alexandre_, Dec 28 2017 %E A297345 a(9) from _Robert G. Wilson v_, Jan 09 2018 %E A297345 a(10)-a(11) from _Jon E. Schoenfield_, Jan 16 2018 %E A297345 a(12) from _Giovanni Resta_, Jan 22 2018