A345705 Numbers k such that (3^ord(3/2, k) - 2^ord(3/2, k))/k is a prime, where ord(3/2, k) is the multiplicative order of 3/2 (mod k).
13, 29, 35, 47, 53, 71, 95, 133, 263, 275, 485, 529, 773, 1009, 1261, 1559, 2711, 3767, 4009, 5275, 7613, 8645, 10295, 11605, 21311, 27755, 29927, 40565, 44519, 67135, 67849, 75335, 83333, 105469, 107185, 153557, 164365, 383705, 405623, 420341, 443105
Offset: 1
Keywords
Links
- Wikipedia, Multiplicative order.
- Wikipedia, Zsigmondy's theorem.
Programs
-
Mathematica
ord[n_] := Module[{k = 1}, While[! Divisible[PowerMod[3, k, n] - PowerMod[2, k, n], n], k++]; k]; f[k_] := 3^k - 2^k; Select[Range[1000], CoprimeQ[6, #] && PrimeQ[f[ord[#]]/#] &]
Formula
13 is a term since ord(3/2, 13) = 4 and (3^4 - 2^4)/13 = 5 is a prime number.
Comments