cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A345705 Numbers k such that (3^ord(3/2, k) - 2^ord(3/2, k))/k is a prime, where ord(3/2, k) is the multiplicative order of 3/2 (mod k).

Original entry on oeis.org

13, 29, 35, 47, 53, 71, 95, 133, 263, 275, 485, 529, 773, 1009, 1261, 1559, 2711, 3767, 4009, 5275, 7613, 8645, 10295, 11605, 21311, 27755, 29927, 40565, 44519, 67135, 67849, 75335, 83333, 105469, 107185, 153557, 164365, 383705, 405623, 420341, 443105
Offset: 1

Views

Author

Amiram Eldar, Jun 24 2021

Keywords

Comments

Numbers k such that gcd(k, 6) = 1 and if m is the least positive integer such that k divides 3^m - 2^m, then (3^m - 2^m)/k is a prime number.
The corresponding primes are 5, 71, 19, 2002867877, 29927, 29, 7, 5, ...

Crossrefs

Programs

  • Mathematica
    ord[n_] := Module[{k = 1}, While[! Divisible[PowerMod[3, k, n] - PowerMod[2, k, n], n], k++]; k]; f[k_] := 3^k - 2^k; Select[Range[1000], CoprimeQ[6, #] && PrimeQ[f[ord[#]]/#] &]

Formula

13 is a term since ord(3/2, 13) = 4 and (3^4 - 2^4)/13 = 5 is a prime number.
Showing 1-1 of 1 results.