A297365 Numbers k such that uphi(k)*usigma(k) = uphi(k+1)*usigma(k+1), where uphi is the unitary totient function (A047994) and usigma the sum of unitary divisors (A034448).
5, 11, 19, 71, 247, 271, 991, 2232, 6200, 8271, 10295, 16744, 18496, 18576, 25704, 26656, 102175, 122607, 166624, 225939, 301103, 747967, 7237384, 7302592, 15760224, 21770800, 28121184, 72967087, 98617024, 104577848, 173859007, 253496176, 335610184, 371191600
Offset: 1
Keywords
Examples
11 is in the sequence since uphi(11) * usigma(11) = 10 * 12 = uphi(12) * usigma(12) = 6 * 20 = 120.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..47 (terms below 10^11)
Programs
-
Mathematica
usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; uphi[n_] := (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]; u[n_] := uphi[n]*usigma[n]; aQ[n_] := u[n] == u[n + 1]; Select[Range[10^6], aQ]
-
PARI
A191414(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2*f[i, 2])-1); } lista(kmax) = {my(a1 = 1, a2); for(k = 2, kmax, a2 = A191414(k); if(a1 == a2, print1(k-1, ", ")); a1 = a2); } \\ Amiram Eldar, Nov 09 2023
Comments