cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297365 Numbers k such that uphi(k)*usigma(k) = uphi(k+1)*usigma(k+1), where uphi is the unitary totient function (A047994) and usigma the sum of unitary divisors (A034448).

Original entry on oeis.org

5, 11, 19, 71, 247, 271, 991, 2232, 6200, 8271, 10295, 16744, 18496, 18576, 25704, 26656, 102175, 122607, 166624, 225939, 301103, 747967, 7237384, 7302592, 15760224, 21770800, 28121184, 72967087, 98617024, 104577848, 173859007, 253496176, 335610184, 371191600
Offset: 1

Views

Author

Amiram Eldar, Dec 29 2017

Keywords

Comments

Equivalently, numbers k such that A191414(k) = A191414(k+1). - Amiram Eldar, Nov 09 2023

Examples

			11 is in the sequence since uphi(11) * usigma(11) = 10 * 12 = uphi(12) * usigma(12) = 6 * 20 = 120.
		

Crossrefs

The unitary version of A244439.

Programs

  • Mathematica
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
    uphi[n_] := (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]; u[n_] := uphi[n]*usigma[n]; aQ[n_] := u[n] == u[n + 1]; Select[Range[10^6], aQ]
  • PARI
    A191414(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^(2*f[i, 2])-1); }
    lista(kmax) = {my(a1 = 1, a2); for(k = 2, kmax, a2 = A191414(k); if(a1 == a2, print1(k-1, ", ")); a1 = a2); } \\ Amiram Eldar, Nov 09 2023