cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297366 Numbers k such that uphi(k) + usigma(k) = uphi(k+1) + usigma(k+1), where uphi is the unitary totient function (A047994) and usigma the sum of unitary divisors (A034448).

This page as a plain text file.
%I A297366 #13 Jul 01 2025 01:03:11
%S A297366 6,10,12,15,18,22,24,26,28,36,40,46,48,52,58,63,72,80,82,88,96,100,
%T A297366 106,108,112,124,136,148,162,166,172,178,192,196,226,232,242,250,262,
%U A297366 268,285,288,292,316,346,352,358,382,388,400,432,448,466,478,486,502
%N A297366 Numbers k such that uphi(k) + usigma(k) = uphi(k+1) + usigma(k+1), where uphi is the unitary totient function (A047994) and usigma the sum of unitary divisors (A034448).
%C A297366 The unitary version of A145749.
%H A297366 Amiram Eldar, <a href="/A297366/b297366.txt">Table of n, a(n) for n = 1..10000</a>
%e A297366 6 is in the sequence since uphi(6) + usigma(6) = 2 + 12 = uphi(7) + usigma(7) = 6 + 8 = 14.
%t A297366 usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])];
%t A297366 uphi[n_] := (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]; u[n_] := uphi[n]+usigma[n]; aQ[n_] := u[n] == u[n + 1]; Select[Range[10^3], aQ]
%o A297366 (PARI) u(k) = {my(f = factor(k)); prod(i = 1, #f~, f[i,1]^f[i,2]-1) + prod(i = 1, #f~, f[i,1]^f[i,2]+1);}
%o A297366 list(kmax) = {my(u1 = u(1), u2); for(k = 2, kmax, u2 = u(k); if(u1 == u2, print1(k-1, ", ")); u1 = u2);} \\ _Amiram Eldar_, Jun 30 2025
%Y A297366 Cf. A034448, A047994, A145749.
%K A297366 nonn
%O A297366 1,1
%A A297366 _Amiram Eldar_, Dec 29 2017