This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297381 #20 Sep 30 2018 20:25:19 %S A297381 -1,1,1,1,2,-1,3,1,1,-2,5,-1,6,-3,-4,1,8,-1,9,-2,-6,-5,11,-1,2,-6,1, %T A297381 -3,14,4,15,1,-10,-8,-12,-1,18,-9,-12,-2,20,6,21,-5,-4,-11,23,-1,3,-2, %U A297381 -16,-6,26,-1,-20,-3,-18,-14,29,4,30,-15,-6,1,-24,10,33,-8,-22,12,35,-1,36,-18,-4,-9,-30,12,39,-2,1,-20,41,6,-32,-21,-28,-5 %N A297381 Numerator of -A023900(n)/2. %H A297381 Antti Karttunen, <a href="/A297381/b297381.txt">Table of n, a(n) for n = 1..65537</a> %H A297381 Wikipedia, <a href="https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation">Cesàro summation</a> %F A297381 a(n) = numerator of -A023900(n)/2. %F A297381 a(n) = numerator of lim_{s->0} zeta(s)*Sum_{d|n} A008683(d)/d^(s-1). %F A297381 a(n) = numerator of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{k=1..m} A191898(n, k) for n > 1. %F A297381 a(k) = numerators of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{n=1..m} A191898(n, k) for k > 1. %t A297381 Clear[n, s, nn]; nn = 64; Numerator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]] %o A297381 (PARI) a(n) = numerator(-sumdiv(n, d, d*moebius(d))/2) \\ _Iain Fox_, Dec 29 2017 %o A297381 (PARI) A297381(n) = numerator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ _Antti Karttunen_, Sep 30 2018 %Y A297381 Cf. A023900, A297382 (denominators). %K A297381 sign,frac %O A297381 1,5 %A A297381 _Mats Granvik_, Dec 29 2017 %E A297381 More terms from _Antti Karttunen_, Sep 30 2018