This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297382 #20 Jul 03 2025 09:30:01 %S A297382 2,2,1,2,1,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1, %T A297382 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1, %U A297382 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A297382 Denominator of -A023900(n)/2. %C A297382 Also denominator of A173557(n)/2. a(n) = 2 iff n is a power of 2, 1 otherwise. - _Antti Karttunen_, Sep 30 2018 %H A297382 Antti Karttunen, <a href="/A297382/b297382.txt">Table of n, a(n) for n = 1..65537</a> %F A297382 a(n) = denominator of -A023900(n)/2. %F A297382 a(n) = 1 + A209229(n). - _Antti Karttunen_, Sep 30 2018 %F A297382 a(n) = A014963(2*n). - _Ridouane Oudra_, Jul 03 2025 %t A297382 Clear[n, s, nn]; nn = 64; Denominator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]] %o A297382 (PARI) A297382(n) = denominator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ _Antti Karttunen_, Sep 30 2018 %Y A297382 Cf. A297381 (numerators). %Y A297382 Cf. A023900, A173557, A014963. %Y A297382 One more than A209229. %K A297382 nonn,frac %O A297382 1,1 %A A297382 _Mats Granvik_, Dec 29 2017 %E A297382 More terms from _Antti Karttunen_, Sep 30 2018