cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297397 Number of 4 X n 0..1 arrays with every 1 horizontally, diagonally or antidiagonally adjacent to 1 neighboring 1.

Original entry on oeis.org

1, 20, 57, 126, 700, 2569, 7779, 31081, 117084, 400727, 1478944, 5485580, 19599269, 71231855, 261062287, 945122754, 3430304343, 12504256178, 45424857782, 164983194009, 600231458537, 2182009835511, 7929300624520, 28830589829675
Offset: 1

Views

Author

R. H. Hardin, Dec 29 2017

Keywords

Examples

			Some solutions for n=5:
..0..0..0..0..1. .1..1..0..0..0. .0..0..1..1..0. .1..0..0..0..0
..0..1..0..1..0. .0..0..0..0..0. .0..0..0..0..0. .0..1..0..0..0
..1..0..0..1..0. .0..0..0..0..0. .0..0..0..0..0. .0..0..0..0..1
..0..0..1..0..0. .1..1..0..1..1. .0..0..0..1..1. .1..1..0..1..0
		

Crossrefs

Row 4 of A297395.

Formula

Empirical: a(n) = a(n-1) + 3*a(n-2) + 24*a(n-3) + 11*a(n-4) - 21*a(n-5) - 67*a(n-6) - 9*a(n-7) - 45*a(n-8).
Empirical g.f.: x*(1 + 19*x + 34*x^2 - 15*x^3 - 88*x^4 - 76*x^5 - 54*x^6 - 45*x^7) / (1 - x - 3*x^2 - 24*x^3 - 11*x^4 + 21*x^5 + 67*x^6 + 9*x^7 + 45*x^8). - Colin Barker, Feb 28 2019