A297075 Lexicographically earliest sequence of distinct positive numbers such that the prime factorizations of two consecutive terms never share a prime exponent >= 1.
1, 2, 4, 3, 8, 5, 9, 6, 16, 7, 25, 10, 27, 11, 32, 12, 64, 13, 36, 14, 49, 15, 72, 17, 81, 18, 125, 19, 100, 21, 108, 22, 121, 23, 128, 20, 216, 26, 144, 24, 169, 29, 196, 30, 200, 31, 225, 33, 243, 28, 256, 34, 288, 35, 289, 37, 324, 38, 343, 39, 361, 40, 400
Offset: 1
Keywords
Examples
The first terms, alongside the corresponding sets of prime exponents, are: n a(n) Set of prime exponents of a(n) -- ---- ------------------------------ 1 1 {} 2 2 {1} 3 4 {2} 4 3 {1} 5 8 {3} 6 5 {1} 7 9 {2} 8 6 {1, 1} 9 16 {4} 10 7 {1} 11 25 {2} 12 10 {1, 1} 13 27 {3} 14 11 {1} 15 32 {5} 16 12 {2, 1} 17 64 {6} 18 13 {1} 19 36 {2, 2} 20 14 {1, 1}
Links
Crossrefs
Programs
-
Mathematica
Nest[Append[#, Block[{k = 3, m = FactorInteger[#[[-1]] ][[All, -1]]}, While[Nand[FreeQ[#, k], ! IntersectingQ[m, FactorInteger[k][[All, -1]]]], k++]; k]] &, {1, 2}, 61] (* Michael De Vlieger, Dec 29 2017 *)
Comments