A297404 A binary representation of the positive exponents that appear in the prime factorization of a number, shown in decimal.
0, 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 3, 1, 1, 1, 8, 1, 3, 1, 3, 1, 1, 1, 5, 2, 1, 4, 3, 1, 1, 1, 16, 1, 1, 1, 2, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 9, 2, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 3, 1, 1, 3, 32, 1, 1, 1, 3, 1, 1, 1, 6, 1, 1, 3, 3, 1, 1, 1, 9, 8, 1, 1, 3, 1, 1
Offset: 1
Examples
For n = 90: - 90 = 5^1 * 3^2 * 2^1, - the exponents appearing in the prime factorization of 90 are 1 and 2, - hence a(90) = 2^(1-1) + 2^(2-1) = 3.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Array[Total@ Map[2^(# - 1) &, Union[FactorInteger[#][[All, -1]] ]] - Boole[# == 1] &, 86] (* Michael De Vlieger, Dec 29 2017 *)
-
PARI
a(n) = my (x=Set(factor(n)[,2]~)); sum(i=1, #x, 2^(x[i]))/2
Formula
a(p^k) = 2^(k-1) for any prime number p and k > 0.
a(n^2) = A000695(2 * a(n)) / 2 for any n > 0.
a(n) <= 1 iff n is squarefree (A005117).
a(n) <= 3 iff n is cubefree (A004709).
a(n) is odd iff n belongs to A052485 (weak numbers).
a(n) is even iff n belongs to A001694 (powerful numbers).
a(n) AND 2 = 2 iff n belongs to A038109 (where AND denotes the bitwise AND operator).
If gcd(m, n) = 1, then a(m * n) = a(m) OR a(n) (where OR denotes the bitwise OR operator).
a(n) = a(A328400(n)). - Peter Munn, Oct 02 2023
Comments