This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297438 #8 Oct 27 2019 12:01:14 %S A297438 1,1,2,3,7,12,29,56,134,283,672,1496,3568,8214,19678,46364,111766, %T A297438 267467,648941,1570540,3833777,9357181,22967808,56430230,139193762, %U A297438 343825265,851777363,2113382992,5255584309,13089273904 %N A297438 A divisor analog of the Motzkin numbers A001006. %C A297438 By changing the upper summation index in the recurrence from k-1 to n-1 we get the Motzkin numbers A001006. %C A297438 That is, by changing %C A297438 Sum_{i=1..k-1} t(n-i, k-1) - Sum_{i=1..k-1} t(n-i, k) %C A297438 into %C A297438 Sum_{i=1..n-1} t(n-i, k-1) - Sum_{i=1..n-1} t(n-i, k), %C A297438 we get the Motzkin numbers. %C A297438 With this change of upper summation index, a(n) is to A001006 as A239605 is to A000108. %t A297438 Clear[t, n, k, i, nn, x]; %t A297438 coeff = {1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, %t A297438 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; %t A297438 mp[m_, e_] := %t A297438 If[e == 0, IdentityMatrix@Length@m, MatrixPower[m, e]]; nn = %t A297438 Length[coeff]; cc = Range[nn]*0 + 1; Monitor[ %t A297438 Do[Clear[t]; t[n_, 1] := t[n, 1] = cc[[n]]; %t A297438 t[n_, k_] := %t A297438 t[n, k] = %t A297438 If[n >= k, %t A297438 Sum[t[n - i, k - 1], {i, 1, k - 1}] - %t A297438 Sum[t[n - i, k], {i, 1, k - 1}], 0]; %t A297438 A4 = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]; %t A297438 A5 = A4[[1 ;; nn - 1]]; A5 = Prepend[A5, ConstantArray[0, nn]]; %t A297438 cc = Total[ %t A297438 Table[coeff[[n]]*mp[A5, n - 1][[All, 1]], {n, 1, nn}]];, {i, 1, %t A297438 nn}], i]; cc %Y A297438 Cf. A001006, A239605. %K A297438 nonn %O A297438 1,3 %A A297438 _Mats Granvik_, Dec 30 2017