cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297450 Primes p for which pi_{24,17}(p) - pi_{24,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).

This page as a plain text file.
%I A297450 #10 May 27 2025 08:42:12
%S A297450 617139273158713,617139273159121,617139273159337,617139273163729,
%T A297450 617139273163793,617139273165889,617139273166121,617139273167057,
%U A297450 617139273169273,617139273169513,617139273169729,617139273170137,617139273170401,617139273171217,617139273206009,617139273206993,617139273207449,617139273207929,617139273208001,617139273504913
%N A297450 Primes p for which pi_{24,17}(p) - pi_{24,1}(p) = -1, where pi_{m,a}(x) is the number of primes <= x which are congruent to a (mod m).
%C A297450 This is a companion sequence to A297449 and the first discovered for pi_{24,17}(p) - pi_{24,1}(p) prime race. The full sequence up to 10^15 contains 3 sign-changing zones with 963922 terms in total with A(963922) = 772739867710897 as the last one.
%H A297450 Sergei D. Shchebetov, <a href="/A297450/b297450.txt">Table of n, a(n) for n = 1..100000</a>
%H A297450 A. Granville and G. Martin, <a href="https://web.archive.org/web/20240529054811/https://maa.org/sites/default/files/pdf/upload_library/22/Ford/granville1.pdf">Prime Number Races</a>, Amer. Math. Monthly 113 (2006), no. 1, 1-33.
%H A297450 Richard H. Hudson and Carter Bays, <a href="http://gdz.sub.uni-goettingen.de/dms/load/img/?PID=GDZPPN002194864">The appearance of tens of billion of integers x with pi_{24, 13}(x) < pi_{24, 1}(x) in the vicinity of 10^12</a>, Journal für die reine und angewandte Mathematik, 299/300 (1978), 234-237. MR 57 #12418.
%H A297450 M. Rubinstein and P. Sarnak, <a href="https://projecteuclid.org/euclid.em/1048515870">Chebyshev’s bias</a>, Experimental Mathematics, Volume 3, Issue 3, 1994, Pages 173-197.
%H A297450 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeQuadraticEffect.html">Prime Quadratic Effect.</a>
%Y A297450 Cf. A295355, A295356.
%K A297450 nonn
%O A297450 1,1
%A A297450 Andrey S. Shchebetov and _Sergei D. Shchebetov_, Jan 27 2018