This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297464 #15 Mar 07 2025 09:06:49 %S A297464 1,4,8,11,14,18,21,24,28,31,34,38,41,44,48,51,54,58,61,64,68,71,74,78, %T A297464 81,84,88,91,94,98,101,104,108,111,114,118,121,124,128,131,134,138, %U A297464 141,144,148,151,154,158,161,164,168,171,174,178,181,184,188,191 %N A297464 Solution (a(n)) of the system of 4 complementary equations in Comments. %C A297464 Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;: %C A297464 a(n) = least new; %C A297464 b(n) = least new; %C A297464 c(n) = least new; %C A297464 d(n) = a(n) + b(n) + c(n); %C A297464 where "least new k" means the least positive integer not yet placed. %C A297464 *** %C A297464 Conjecture: for all n >= 0, %C A297464 0 <= 10n - 6 - 3 a(n) <= 2 %C A297464 0 <= 10n - 2 - 3 b(n) <= 3 %C A297464 0 <= 10n + 1 - 3 c(n) <= 3 %C A297464 0 <= 10n - 3 - d(n) <= 2 %C A297464 *** %C A297464 The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A075326, the "anti-Fibonacci sequence." See A299409 for the "anti-tetranacci" sequences. %H A297464 Clark Kimberling, <a href="/A297464/b297464.txt">Table of n, a(n) for n = 0..1000</a> %H A297464 Wieb Bosma, Rene Bruin, Robbert Fokkink, Jonathan Grube, Anniek Reuijl, and Thian Tromp, <a href="https://arxiv.org/abs/2503.04122">Using Walnut to solve problems from the OEIS</a>, arXiv:2503.04122 [math.NT], 2025. See p. 8. %F A297464 a(n) = a(n-1) + a(n-3) - a(n-4) (conjectured). %F A297464 d(n) = A275389(n) for n >= 0. %e A297464 n: 0 1 2 3 4 5 6 7 8 9 %e A297464 a: 1 4 8 11 14 18 21 24 28 31 %e A297464 b: 2 5 9 12 15 19 22 25 29 32 %e A297464 c: 3 7 10 13 17 20 23 26 30 33 %e A297464 d: 6 16 27 36 46 57 66 75 87 96 %t A297464 z = 400; %t A297464 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A297464 a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]]; %t A297464 Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]], %t A297464 AppendTo[b, mex[Flatten[{a, b, c, d}], 1]], %t A297464 AppendTo[c, mex[Flatten[{a, b, c, d}], 1]], %t A297464 AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}]; %t A297464 Take[a, 100] (* A297464 *) %t A297464 Take[b, 100] (* A297465 *) %t A297464 Take[c, 100] (* A297466 *) %t A297464 Take[d, 100] (* A265389 *) %Y A297464 Cf. A036554, A299634, A297465, A297466, A265389. %K A297464 nonn,easy %O A297464 0,2 %A A297464 _Clark Kimberling_, Apr 19 2018