This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297465 #4 Apr 22 2018 17:50:23 %S A297465 2,5,9,12,15,19,22,25,29,32,35,39,42,45,49,52,55,59,62,65,69,72,76,79, %T A297465 82,85,89,92,95,99,102,105,109,112,115,119,122,125,129,132,135,139, %U A297465 142,145,149,152,155,159,162,166,169,172,175,179,182,185,189,192 %N A297465 Solution (b(n)) of the system of 4 complementary equations in Comments. %C A297465 Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3;: %C A297465 a(n) = least new; %C A297465 b(n) = least new; %C A297465 c(n) = least new; %C A297465 d(n) = a(n) + b(n) + c(n); %C A297465 where "least new k" means the least positive integer not yet placed. %C A297465 *** %C A297465 Conjecture: for all n >= 0, %C A297465 0 <= 10n - 6 - 3 a(n) <= 2 %C A297465 0 <= 10n - 2 - 3 b(n) <= 3 %C A297465 0 <= 10n +1 - 3 c(n) <= 3 %C A297465 0 <= 10n - 3 - d(n) <= 2 %C A297465 *** %C A297465 The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A036554, the "anti-Fibonacci sequence." %H A297465 Clark Kimberling, <a href="/A297465/b297465.txt">Table of n, a(n) for n = 0..1000</a> %e A297465 n: 0 1 2 3 4 5 6 7 8 9 %e A297465 a: 1 4 8 11 14 18 21 24 28 31 %e A297465 b: 2 5 9 12 15 19 22 25 29 32 %e A297465 c: 3 7 10 13 17 20 23 26 30 33 %e A297465 d: 6 16 27 36 46 57 66 75 87 96 %t A297465 z = 400; %t A297465 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A297465 a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]]; %t A297465 Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]], %t A297465 AppendTo[b, mex[Flatten[{a, b, c, d}], 1]], %t A297465 AppendTo[c, mex[Flatten[{a, b, c, d}], 1]], %t A297465 AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}]; %t A297465 Take[a, 100] (* A297464 *) %t A297465 Take[b, 100] (* A297465 *) %t A297465 Take[c, 100] (* A297466 *) %t A297465 Take[d, 100] (* A265389 *) %Y A297465 Cf. A036554, A299634, A297464, A297466, A265389. %K A297465 nonn,easy %O A297465 0,1 %A A297465 _Clark Kimberling_, Apr 22 2018