This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297466 #14 Jul 17 2025 17:13:32 %S A297466 3,7,10,13,17,20,23,26,30,33,37,40,43,47,50,53,56,60,63,67,70,73,77, %T A297466 80,83,86,90,93,97,100,103,107,110,113,116,120,123,127,130,133,137, %U A297466 140,143,146,150,153,157,160,163,167,170,173,176,180,183,187,190,193 %N A297466 Solution (c(n)) of the system of 4 complementary equations in Comments. %C A297466 Define sequences a(n), b(n), c(n), d(n) recursively, starting with a(0) = 1, b(0) = 2, c(0) = 3: %C A297466 a(n) = least new; %C A297466 b(n) = least new; %C A297466 c(n) = least new; %C A297466 d(n) = a(n) + b(n) + c(n); %C A297466 where "least new k" means the least positive integer not yet placed. %C A297466 *** %C A297466 Conjecture: for all n >= 0, %C A297466 0 <= 10n - 6 - 3 a(n) <= 2 %C A297466 0 <= 10n - 2 - 3 b(n) <= 3 %C A297466 0 <= 10n + 1 - 3 c(n) <= 3 %C A297466 0 <= 10n - 3 - d(n) <= 2 %C A297466 *** %C A297466 The sequences a,b,c,d partition the positive integers. The sequence d can be called the "anti-tribonacci sequence"; viz., if sequences a and b are defined as above, and c(n) is defined by c(n) = a(n) + b(n), then the resulting system of 3 complementary sequences gives c = A036554, the "anti-Fibonacci sequence." %C A297466 The linear recurrence with signature (1,0,0,0,0,0,0,0,1,-1) and g.f. (3 + 4*x + 3*x^2 + 3*x^3 + 4*x^4 + 3*x^5 + 3*x^6 + 3*x^7 + 4*x^8)/(1 - x - x^9 + x^10) first differs from this sequence at a(67). - _Georg Fischer_, Jul 17 2025 %H A297466 Clark Kimberling, <a href="/A297466/b297466.txt">Table of n, a(n) for n = 0..1000</a> %e A297466 n: 0 1 2 3 4 5 6 7 8 9 %e A297466 a: 1 4 8 11 14 18 21 24 28 31 %e A297466 b: 2 5 9 12 15 19 22 25 29 32 %e A297466 c: 3 7 10 13 17 20 23 26 30 33 %e A297466 d: 6 16 27 36 46 57 66 75 87 96 %t A297466 z = 400; %t A297466 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A297466 a = {1}; b = {2}; c = {3}; d = {}; AppendTo[d, Last[a] + Last[b] + Last[c]]; %t A297466 Do[{AppendTo[a, mex[Flatten[{a, b, c, d}], 1]], %t A297466 AppendTo[b, mex[Flatten[{a, b, c, d}], 1]], %t A297466 AppendTo[c, mex[Flatten[{a, b, c, d}], 1]], %t A297466 AppendTo[d, Last[a] + Last[b] + Last[c]]}, {z}]; %t A297466 Take[a, 100] (* A297464 *) %t A297466 Take[b, 100] (* A297465 *) %t A297466 Take[c, 100] (* A297466 *) %t A297466 Take[d, 100] (* A265389 *) %Y A297466 Cf. A036554, A299634, A297464, A297465, A265389. %K A297466 nonn,easy %O A297466 0,1 %A A297466 _Clark Kimberling_, Apr 22 2018