This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297467 #8 May 05 2018 04:18:04 %S A297467 1,2,10,31,35,95,99,108,112,289,293,302,306,330,335,343,348,875,880, %T A297467 888,893,916,921,929,934,1002,1007,1018,1023,1043,1048,1059,1064,2641, %U A297467 2646,2657,2662,2682,2687,2698,2703,2768,2773,2784,2789,2809,2814,2825,2830 %N A297467 Solution (a(n)) of the system of 2 complementary equations in Comments. %C A297467 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, a(1) = 1, b(0) = 3; for n >= 1, %C A297467 a(2n) = 3*a(n) + b(n); %C A297467 a(2n+1) = 3*a(n-1) + n; %C A297467 b(n) = least new; %C A297467 where "least new k" means the least positive integer not yet placed. The sequences (a(n)) and (b(n)) are complementary. %H A297467 Clark Kimberling, <a href="/A297467/b297467.txt">Table of n, a(n) for n = 0..2000</a> %e A297467 n: 0 1 2 3 4 5 6 7 8 %e A297467 a: 1 2 10 31 35 95 99 108 112 %e A297467 b: 3 4 5 6 7 8 9 11 12 %t A297467 z = 300; %t A297467 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A297467 a = {1, 2}; b = {3}; %t A297467 Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]]; %t A297467 AppendTo[a, 3 a[[#/2 + 1]] + b[[#/2 + 1]]] &[Length[a]]; %t A297467 AppendTo[a, 3 a[[(# + 3)/2]] + (# - 1)/2] &[Length[a]], {z}] %t A297467 Take[a, 100] (* A297467 *) %t A297467 Take[b, 100] (* A297468 *) %t A297467 (* _Peter J. C. Moses_, Apr 22 2018 *) %Y A297467 Cf. A299634, A297468. %K A297467 nonn,easy %O A297467 0,2 %A A297467 _Clark Kimberling_, Apr 24 2018