This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297468 #4 Apr 25 2018 08:33:11 %S A297468 3,4,5,6,7,8,9,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28, %T A297468 29,30,32,33,34,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53, %U A297468 54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71 %N A297468 Solution (b(n)) of the system of 2 complementary equations in Comments. %C A297468 Define sequences a(n), b(n), c(n) recursively, starting with a(0) = 1, a(1) = 1, b(0) = 3; for n >= 1, %C A297468 a(2n) = 3*a(n) + b(n); %C A297468 a(2n+1) = 3*a(n-1) + n; %C A297468 b(n) = least new; %C A297468 where "least new k" means the least positive integer not yet placed. The sequences (a(n)) and (b(n)) are complementary. %H A297468 Clark Kimberling, <a href="/A297468/b297468.txt">Table of n, a(n) for n = 0..1000</a> %e A297468 n: 0 1 2 3 4 5 6 7 8 %e A297468 a: 1 2 10 31 35 95 99 108 112 %e A297468 b: 3 4 5 6 7 8 9 11 12 %t A297468 z = 300; %t A297468 mex[list_, start_] := (NestWhile[# + 1 &, start, MemberQ[list, #] &]); %t A297468 a = {1, 2}; b = {3}; %t A297468 Do[AppendTo[b, mex[Flatten[{a, b}], Last[b]]]; %t A297468 AppendTo[a, 3 a[[#/2 + 1]] + b[[#/2 + 1]]] &[Length[a]]; %t A297468 AppendTo[a, 3 a[[(# + 3)/2]] + (# - 1)/2] &[Length[a]], {z}] %t A297468 Take[a, 100] (* A297467 *) %t A297468 Take[b, 100] (* A297468 *) %t A297468 (* _Peter J. C. Moses_, Apr 22 2018 *) %Y A297468 Cf. A299634, A297467. %K A297468 nonn,easy %O A297468 0,1 %A A297468 _Clark Kimberling_, Apr 24 2018