A297473 For any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; a(n) = g(f(n)^2).
1, 2, 5, 16, 11, 90, 17, 512, 625, 550, 23, 6480, 31, 1666, 2695, 65536, 41, 101250, 47, 110000, 10285, 5566, 59, 1866240, 14641, 10478, 1953125, 653072, 67, 1212750, 73, 33554432, 19435, 23698, 31603, 65610000, 83, 33934, 44795, 88000000, 97, 9071370, 103
Offset: 1
Keywords
Examples
For n = 12: - 12 = 2^2 * 3 = prime(1+0)^2 * prime(1+1), - f(12) = 2 + x, - f(12)^2 = 4 + 4*x + x^2, - a(12) = prime(1+0)^4 * prime(1+1)^4 * prime(1+2) = 2^4 * 3^4 * 5 = 6480.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Colored logarithmic scatterplot of the first 100000 terms (where the color is function of A001222(n))
Programs
-
PARI
a(n) = my (f=factor(n), p=apply(primepi, f[,1]~)); prod (i=1, #p, prod(j=1, #p, prime(p[i]+p[j]-1)^(f[i,2]*f[j,2])))
Comments