cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297473 For any number n > 0, let f(n) be the polynomial of a single indeterminate x where the coefficient of x^e is the prime(1+e)-adic valuation of n (where prime(k) denotes the k-th prime); f establishes a bijection between the positive numbers and the polynomials of a single indeterminate x with nonnegative integer coefficients; let g be the inverse of f; a(n) = g(f(n)^2).

Original entry on oeis.org

1, 2, 5, 16, 11, 90, 17, 512, 625, 550, 23, 6480, 31, 1666, 2695, 65536, 41, 101250, 47, 110000, 10285, 5566, 59, 1866240, 14641, 10478, 1953125, 653072, 67, 1212750, 73, 33554432, 19435, 23698, 31603, 65610000, 83, 33934, 44795, 88000000, 97, 9071370, 103
Offset: 1

Views

Author

Rémy Sigrist, Dec 30 2017

Keywords

Comments

This sequence is the main diagonal of A297845.
This sequence has similarities with A296857.

Examples

			For n = 12:
- 12 = 2^2 * 3 = prime(1+0)^2 * prime(1+1),
- f(12) = 2 + x,
- f(12)^2 = 4 + 4*x + x^2,
- a(12) = prime(1+0)^4 * prime(1+1)^4 * prime(1+2) = 2^4 * 3^4 * 5 = 6480.
		

Crossrefs

Programs

  • PARI
    a(n) = my (f=factor(n), p=apply(primepi, f[,1]~)); prod (i=1, #p, prod(j=1, #p, prime(p[i]+p[j]-1)^(f[i,2]*f[j,2])))

Formula

For any n > 0 and k > 0:
- A001221(a(n)) <= A001221(n)^2,
- A001222(a(n)) = A001222(n)^2,
- A055396(a(n)) = 2*A055396(n)-1 + [n=1],
- A061395(a(n)) = 2*A061395(n)-1 + [n=1],
- a(A000040(n)) = A031368(n),
- a(A000040(n)^k) = A031368(n)^(k^2).