This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297474 #14 Feb 16 2025 08:33:52 %S A297474 1,2,14,92,844,9304,121288,1822736,31030928,590248736,12406395616, %T A297474 285558273472,7143371664064,192972180052352,5598713198048384, %U A297474 173627942889668864,5731684010612723968,200669613102747214336,7426773564495661485568,289713958515451427511296 %N A297474 Number of maximal matchings in the n-cocktail party graph. %C A297474 A maximal matching in the n-cocktail party graph is either a perfect matching or a matching with a single unmatched pair. - _Andrew Howroyd_, Dec 30 2017 %H A297474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CocktailPartyGraph.html">Cocktail Party Graph</a> %H A297474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching.html">Matching</a> %H A297474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIndependentEdgeSet.html">Maximal Independent Edge Set</a> %F A297474 a(n) = A053871(n) + n*A053871(n-1). - _Andrew Howroyd_, Dec 30 2017 %t A297474 Table[(-1)^(n + 1) (n HypergeometricPFQ[{1/2, 1 - n}, {}, 2] - HypergeometricPFQ[{1/2, -n}, {}, 2]), {n, 20}] %t A297474 Table[-I (-1)^n (n HypergeometricU[1/2, n + 1/2, -1/2] - HypergeometricU[1/2, n + 3/2, -1/2])/Sqrt[2], {n, 20}] %o A297474 (PARI) \\ here b(n) is A053871. %o A297474 b(n)={if(n<1, n==0, sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(2*k)!/(2^k*k!)))} %o A297474 a(n)=b(n) + n*b(n-1); \\ _Andrew Howroyd_, Dec 30 2017 %Y A297474 Cf. A053871. %K A297474 nonn %O A297474 1,2 %A A297474 _Eric W. Weisstein_, Dec 30 2017 %E A297474 a(9)-a(20) from _Andrew Howroyd_, Dec 30 2017