cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A297474 Number of maximal matchings in the n-cocktail party graph.

This page as a plain text file.
%I A297474 #14 Feb 16 2025 08:33:52
%S A297474 1,2,14,92,844,9304,121288,1822736,31030928,590248736,12406395616,
%T A297474 285558273472,7143371664064,192972180052352,5598713198048384,
%U A297474 173627942889668864,5731684010612723968,200669613102747214336,7426773564495661485568,289713958515451427511296
%N A297474 Number of maximal matchings in the n-cocktail party graph.
%C A297474 A maximal matching in the n-cocktail party graph is either a perfect matching or a matching with a single unmatched pair. - _Andrew Howroyd_, Dec 30 2017
%H A297474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CocktailPartyGraph.html">Cocktail Party Graph</a>
%H A297474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching.html">Matching</a>
%H A297474 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIndependentEdgeSet.html">Maximal Independent Edge Set</a>
%F A297474 a(n) = A053871(n) + n*A053871(n-1). - _Andrew Howroyd_, Dec 30 2017
%t A297474 Table[(-1)^(n + 1) (n HypergeometricPFQ[{1/2, 1 - n}, {}, 2] - HypergeometricPFQ[{1/2, -n}, {}, 2]), {n, 20}]
%t A297474 Table[-I (-1)^n (n HypergeometricU[1/2, n + 1/2, -1/2] - HypergeometricU[1/2, n + 3/2, -1/2])/Sqrt[2], {n, 20}]
%o A297474 (PARI) \\ here b(n) is A053871.
%o A297474 b(n)={if(n<1, n==0, sum(k=0, n, (-1)^(n-k)*binomial(n,k)*(2*k)!/(2^k*k!)))}
%o A297474 a(n)=b(n) + n*b(n-1); \\ _Andrew Howroyd_, Dec 30 2017
%Y A297474 Cf. A053871.
%K A297474 nonn
%O A297474 1,2
%A A297474 _Eric W. Weisstein_, Dec 30 2017
%E A297474 a(9)-a(20) from _Andrew Howroyd_, Dec 30 2017