A297477 Triangle read by rows: T(n, k) gives the coefficients of x^k of the characteristic polynomial P(n, x) of the n X n matrix M with entries M(i, j) = 1 if i = 1 or j = 1, -1 if i = j > 1, and 0 otherwise. T(0, 0) := 0.
0, 1, -1, -2, 0, 1, 3, 3, -1, -1, -4, -8, -3, 2, 1, 5, 15, 14, 2, -3, -1, -6, -24, -35, -20, 0, 4, 1, 7, 35, 69, 65, 25, -3, -5, -1, -8, -48, -119, -154, -105, -28, 7, 6, 1, 9, 63, 188, 308, 294, 154, 28, -12, -7, -1, -10, -80, -279, -552, -672, -504, -210, -24, 18, 8, 1
Offset: 0
Examples
The matrix for these characteristic polynomials starts: { {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, {1, -1, 0, 0, 0, 0, 0, 0, 0, 0}, {1, 0, -1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 0, -1, 0, 0, 0, 0, 0, 0}, {1, 0, 0, 0, -1, 0, 0, 0, 0, 0}, {1, 0, 0, 0, 0, -1, 0, 0, 0, 0}, {1, 0, 0, 0, 0, 0, -1, 0, 0, 0}, {1, 0, 0, 0, 0, 0, 0, -1, 0, 0}, {1, 0, 0, 0, 0, 0, 0, 0, -1, 0}, {1, 0, 0, 0, 0, 0, 0, 0, 0, -1} } ---------------------------------------------------------------------- The table T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 0 1: 1 -1 2: -2 0 1 3: 3 3 -1 -1 4: -4 -8 -3 2 1 5; 5 15 14 2 -3 -1 6: -6 -24 -35 -20 0 4 1 7: 7 35 69 65 25 -3 -5 -1 8: -8 -48 -119 -154 -105 -28 7 6 1 9: 9 63 188 308 294 154 28 -12 -7 -1 10: -10 -80 -279 -552 -672 -504 -210 -24 18 8 1 ... reformatted by _Wolfdieter Lang_, Feb 02 2018.
Crossrefs
Programs
-
Maple
f:= proc(n) local M,P,lambda,k; M:= Matrix(n,n, proc(i,j) if i=1 or j=1 then 1 elif i=j then -1 else 0 fi end proc); P:= (-1)^n*LinearAlgebra:-CharacteristicPolynomial(M,lambda); seq(coeff(P,lambda,k),k=0..n) end proc: f(0):= 0: for n from 0 to 10 do f(n) od; # Robert Israel, Feb 02 2018
-
Mathematica
Clear[A, x, t]; Table[t[n_, 1] = 1; t[1, k_] = 1; t[n_, k_] := t[n, k] = If[n < k, If[And[n > 1, k > 1], Sum[-t[k - i, n], {i, 1, k - 1}], 0], If[And[n > 1, k > 1], Sum[-t[n - i, k], {i, 1, n - 1}], 0]]; A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]; CoefficientList[CharacteristicPolynomial[A, x], x], {nn, 1, 10}]; Flatten[%]
Formula
From Wolfdieter Lang, Feb 02 2018: (Start)
T(n, k) = [x*k] P(n, x), for n >= 1, with P(n, x) = Det(M_n - x*1_n), and the matrix M_n defined in the name (1_n is the n dimensional unit matrix). T(0, 0):= 0.
T(n, k) = (-1)^(n+1)*n for k = 0, (-1)^(n+1)*n*(n-2) for k = 1, and (-1)^n*(binomial(n-2, k-2) - n*binomial(n-2, k)) for k >= 2, with n >= 0 and 0 <= k <= n. T(n, k) = 0 for k > n. (End)
Extensions
Edited by Wolfdieter Lang, Feb 02 2018
Comments