This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A297478 #25 Jun 14 2025 21:41:54 %S A297478 11,33,102,344,1241,4719,18785,77917,335502,1495094,6877587,32587137, %T A297478 158736257,793609535,4066342542,21325689560,114340142239,626087871897, %U A297478 3497839239743,19921238359695,115568831686398,682428323156306,4098963089083577,25027772430177051 %N A297478 Number of maximal matchings in the n-sun graph. %H A297478 Andrew Howroyd, <a href="/A297478/b297478.txt">Table of n, a(n) for n = 3..500</a> %H A297478 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Matching.html">Matching</a>. %H A297478 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MaximalIndependentEdgeSet.html">Maximal Independent Edge Set</a>. %H A297478 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SunGraph.html">Sun Graph</a>. %F A297478 a(n) = Sum_{k=0..floor(n/2)} n * (binomial(n-2+2*k, 4*k+1) + 2*binomial(n+2*k, 4*k)/(n+2*k)) * (2*k)! / (2^k*k!). - _Andrew Howroyd_, Jun 14 2025 %o A297478 (PARI) a(n)={sum(k=0, n\2, n*(binomial(n-2+2*k, 4*k+1) + 2*binomial(n+2*k, 4*k)/(n+2*k))*(2*k)!/(2^k*k!) )} \\ _Andrew Howroyd_, Jun 14 2025 %Y A297478 Cf. A192856. %K A297478 nonn %O A297478 3,1 %A A297478 _Eric W. Weisstein_, Dec 30 2017 %E A297478 a(14)-a(18) from _Pontus von Brömssen_, Dec 24 2022 %E A297478 a(19) from _Eric W. Weisstein_, Jul 21 2024 %E A297478 a(20) from _Eric W. Weisstein_, Aug 17 2024 %E A297478 a(21) onwards from _Andrew Howroyd_, Jun 14 2025